-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy patheval.py
290 lines (243 loc) · 10.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from __future__ import print_function
import os, sys
import pickle
import time
import glob
import numpy as np
import torch
from model import PVSE
from loss import cosine_sim, order_sim
from vocab import Vocabulary
from data import get_test_loader
from logger import AverageMeter
from option import parser, verify_input_args
ORDER_BATCH_SIZE = 100
def encode_data(model, data_loader, use_gpu=False):
"""Encode all images and sentences loadable by data_loader"""
# switch to evaluate mode
model.eval()
use_mil = model.module.mil if hasattr(model, 'module') else model.mil
# numpy array to keep all the embeddings
img_embs, txt_embs = None, None
for i, data in enumerate(data_loader):
img, txt, txt_len, ids = data
if torch.cuda.is_available():
img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda()
# compute the embeddings
img_emb, txt_emb, _, _, _, _ = model.forward(img, txt, txt_len)
del img, txt, txt_len
# initialize the output embeddings
if img_embs is None:
if use_gpu:
emb_sz = [len(data_loader.dataset), img_emb.size(1), img_emb.size(2)] \
if use_mil else [len(data_loader.dataset), img_emb.size(1)]
img_embs = torch.zeros(emb_sz, dtype=img_emb.dtype, requires_grad=False).cuda()
txt_embs = torch.zeros(emb_sz, dtype=txt_emb.dtype, requires_grad=False).cuda()
else:
emb_sz = (len(data_loader.dataset), img_emb.size(1), img_emb.size(2)) \
if use_mil else (len(data_loader.dataset), img_emb.size(1))
img_embs = np.zeros(emb_sz)
txt_embs = np.zeros(emb_sz)
# preserve the embeddings by copying from gpu and converting to numpy
img_embs[ids] = img_emb if use_gpu else img_emb.data.cpu().numpy().copy()
txt_embs[ids] = txt_emb if use_gpu else txt_emb.data.cpu().numpy().copy()
return img_embs, txt_embs
def i2t(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False):
"""
Images->Text (Image Annotation)
Images: (nreps*N, K) matrix of images
Captions: (nreps*N, K) matrix of sentences
"""
if use_gpu:
assert not order, 'Order embedding not supported in GPU mode'
if npts is None:
npts = int(images.shape[0] / nreps)
index_list = []
ranks, top1 = np.zeros(npts), np.zeros(npts)
for index in range(npts):
# Get query image
im = images[nreps * index]
im = im.reshape((1,) + im.shape)
# Compute scores
if use_gpu:
if len(sentences.shape) == 2:
sim = im.mm(sentences.t()).view(-1)
else:
_, K, D = im.shape
sim_kk = im.view(-1, D).mm(sentences.view(-1, D).t())
sim_kk = sim_kk.view(im.size(0), K, sentences.size(0), K)
sim_kk = sim_kk.permute(0,1,3,2).contiguous()
sim_kk = sim_kk.view(im.size(0), -1, sentences.size(0))
sim, _ = sim_kk.max(dim=1)
sim = sim.flatten()
else:
if order:
if index % ORDER_BATCH_SIZE == 0:
mx = min(images.shape[0], nreps * (index + ORDER_BATCH_SIZE))
im2 = images[nreps * index:mx:nreps]
sim_batch = order_sim(torch.Tensor(im2).cuda(), torch.Tensor(sentences).cuda())
sim_batch = sim_batch.cpu().numpy()
sim = sim_batch[index % ORDER_BATCH_SIZE]
else:
sim = np.tensordot(im, sentences, axes=[2, 2]).max(axis=(0,1,3)).flatten() \
if len(sentences.shape) == 3 else np.dot(im, sentences.T).flatten()
if use_gpu:
_, inds_gpu = sim.sort()
inds = inds_gpu.cpu().numpy().copy()[::-1]
else:
inds = np.argsort(sim)[::-1]
index_list.append(inds[0])
# Score
rank = 1e20
for i in range(nreps * index, nreps * (index + 1), 1):
tmp = np.where(inds == i)[0][0]
if tmp < rank:
rank = tmp
ranks[index] = rank
top1[index] = inds[0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
if return_ranks:
return (r1, r5, r10, medr, meanr), (ranks, top1)
else:
return (r1, r5, r10, medr, meanr)
def t2i(images, sentences, nreps=1, npts=None, return_ranks=False, order=False, use_gpu=False):
"""
Text->Images (Image Search)
Images: (nreps*N, K) matrix of images
Captions: (nreps*N, K) matrix of sentences
"""
if use_gpu:
assert not order, 'Order embedding not supported in GPU mode'
if npts is None:
npts = int(images.shape[0] / nreps)
if use_gpu:
ims = torch.stack([images[i] for i in range(0, len(images), nreps)])
else:
ims = np.array([images[i] for i in range(0, len(images), nreps)])
ranks, top1 = np.zeros(nreps * npts), np.zeros(nreps * npts)
for index in range(npts):
# Get query sentences
queries = sentences[nreps * index:nreps * (index + 1)]
# Compute scores
if use_gpu:
if len(sentences.shape) == 2:
sim = queries.mm(ims.t())
else:
sim_kk = queries.view(-1, queries.size(-1)).mm(ims.view(-1, ims.size(-1)).t())
sim_kk = sim_kk.view(queries.size(0), queries.size(1), ims.size(0), ims.size(1))
sim_kk = sim_kk.permute(0,1,3,2).contiguous()
sim_kk = sim_kk.view(queries.size(0), -1, ims.size(0))
sim, _ = sim_kk.max(dim=1)
else:
if order:
if nreps * index % ORDER_BATCH_SIZE == 0:
mx = min(sentences.shape[0], nreps * index + ORDER_BATCH_SIZE)
sentences_batch = sentences[nreps * index:mx]
sim_batch = order_sim(torch.Tensor(images).cuda(),
torch.Tensor(sentences_batch).cuda())
sim_batch = sim_batch.cpu().numpy()
sim = sim_batch[:, (nreps * index) % ORDER_BATCH_SIZE:(nreps * index) % ORDER_BATCH_SIZE + nreps].T
else:
sim = np.tensordot(queries, ims, axes=[2, 2]).max(axis=(1,3)) \
if len(sentences.shape) == 3 else np.dot(queries, ims.T)
inds = np.zeros(sim.shape)
for i in range(len(inds)):
if use_gpu:
_, inds_gpu = sim[i].sort()
inds[i] = inds_gpu.cpu().numpy().copy()[::-1]
else:
inds[i] = np.argsort(sim[i])[::-1]
ranks[nreps * index + i] = np.where(inds[i] == index)[0][0]
top1[nreps * index + i] = inds[i][0]
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
if return_ranks:
return (r1, r5, r10, medr, meanr), (ranks, top1)
else:
return (r1, r5, r10, medr, meanr)
def convert_old_state_dict(x, model, multi_gpu=False):
params = model.state_dict()
prefix = ['module.img_enc.', 'module.txt_enc.'] \
if multi_gpu else ['img_enc.', 'txt_enc.']
for i, old_params in enumerate(x):
for key, val in old_params.items():
key = prefix[i] + key.replace('module.','').replace('our_model', 'pie_net')
assert key in params, '{} not found in model state_dict'.format(key)
params[key] = val
return params
def evalrank(model, args, split='test'):
print('Loading dataset')
data_loader = get_test_loader(args, vocab)
print('Computing results... (eval_on_gpu={})'.format(args.eval_on_gpu))
img_embs, txt_embs = encode_data(model, data_loader, args.eval_on_gpu)
n_samples = img_embs.shape[0]
nreps = 5 if args.data_name == 'coco' else 1
print('Images: %d, Sentences: %d' % (img_embs.shape[0] / nreps, txt_embs.shape[0]))
# 5fold cross-validation, only for MSCOCO
mean_metrics = None
if args.data_name == 'coco':
results = []
for i in range(5):
r, rt0 = i2t(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000],
nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu)
r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples)
print("Image to text: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % r)
ri, rti0 = t2i(img_embs[i*5000:(i + 1)*5000], txt_embs[i*5000:(i + 1)*5000],
nreps=nreps, return_ranks=True, order=args.order, use_gpu=args.eval_on_gpu)
if i == 0:
rt, rti = rt0, rti0
ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples)
print("Text to image: %.2f, %.2f, %.2f, %.2f (%.2f), %.2f (%.2f)" % ri)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
print("rsum: %.2f ar: %.2f ari: %.2f" % (rsum, ar, ari))
results += [list(r) + list(ri) + [ar, ari, rsum]]
mean_metrics = tuple(np.array(results).mean(axis=0).flatten())
print("-----------------------------------")
print("Mean metrics from 5-fold evaluation: ")
print("rsum: %.2f" % (mean_metrics[-1] * 6))
print("Average i2t Recall: %.2f" % mean_metrics[-3])
print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[:7])
print("Average t2i Recall: %.2f" % mean_metrics[-2])
print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % mean_metrics[7:14])
# no cross-validation, full evaluation
r, rt = i2t(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu)
ri, rti = t2i(img_embs, txt_embs, nreps=nreps, return_ranks=True, use_gpu=args.eval_on_gpu)
ar = (r[0] + r[1] + r[2]) / 3
ari = (ri[0] + ri[1] + ri[2]) / 3
rsum = r[0] + r[1] + r[2] + ri[0] + ri[1] + ri[2]
r = (r[0], r[1], r[2], r[3], r[3] / n_samples, r[4], r[4] / n_samples)
ri = (ri[0], ri[1], ri[2], ri[3], ri[3] / n_samples, ri[4], ri[4] / n_samples)
print("rsum: %.2f" % rsum)
print("Average i2t Recall: %.2f" % ar)
print("Image to text: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % r)
print("Average t2i Recall: %.2f" % ari)
print("Text to image: %.2f %.2f %.2f %.2f (%.2f) %.2f (%.2f)" % ri)
return mean_metrics
if __name__ == '__main__':
multi_gpu = torch.cuda.device_count() > 1
args = verify_input_args(parser.parse_args())
opt = verify_input_args(parser.parse_args())
# load vocabulary used by the model
with open('./vocab/%s_vocab.pkl' % args.data_name, 'rb') as f:
vocab = pickle.load(f)
args.vocab_size = len(vocab)
# load model and options
assert os.path.isfile(args.ckpt)
model = PVSE(vocab.word2idx, args)
if torch.cuda.is_available():
model = torch.nn.DataParallel(model).cuda() if multi_gpu else model
torch.backends.cudnn.benchmark = True
model.load_state_dict(torch.load(args.ckpt))
# evaluate
metrics = evalrank(model, args, split='test')