forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor.py
executable file
·46 lines (39 loc) · 1.56 KB
/
actor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gym
import numpy as np
import parl
from parl.env.atari_wrappers import wrap_deepmind, MonitorEnv, get_wrapper_by_cls
from collections import defaultdict
@parl.remote_class
class Actor(object):
def __init__(self, config):
self.config = config
env = gym.make(config['env_name'])
self.env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
def step(self, action):
obs, reward, done, info = self.env.step(action)
return obs, reward, done
def reset(self):
obs = self.env.reset()
return obs
def get_metrics(self):
metrics = defaultdict(list)
monitor = get_wrapper_by_cls(self.env, MonitorEnv)
if monitor is not None:
for episode_rewards, episode_steps in monitor.next_episode_results(
):
metrics['episode_rewards'].append(episode_rewards)
metrics['episode_steps'].append(episode_steps)
return metrics