forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·330 lines (268 loc) · 11.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gym
import numpy as np
import os
import queue
import six
import time
import threading
import parl
from atari_model import AtariModel
from atari_agent import AtariAgent
from collections import defaultdict
from parl.env.atari_wrappers import wrap_deepmind
from parl.utils import logger, get_gpu_count, summary
from parl.utils.scheduler import PiecewiseScheduler
from parl.utils.time_stat import TimeStat
from parl.utils.window_stat import WindowStat
from parl.utils.rl_utils import calc_gae
from parl.utils import machine_info
from actor import Actor
class Learner(object):
def __init__(self, config):
self.config = config
self.sample_data_queue = queue.Queue()
self.batch_buffer = defaultdict(list)
#=========== Create Agent ==========
env = gym.make(config['env_name'])
env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
obs_shape = env.observation_space.shape
act_dim = env.action_space.n
self.config['obs_shape'] = obs_shape
self.config['act_dim'] = act_dim
model = AtariModel(act_dim)
algorithm = parl.algorithms.A3C(
model, vf_loss_coeff=config['vf_loss_coeff'])
self.agent = AtariAgent(
algorithm,
obs_shape=self.config['obs_shape'],
predict_thread_num=self.config['predict_thread_num'],
learn_data_provider=self.learn_data_provider)
if machine_info.is_gpu_available():
assert get_gpu_count() == 1, 'Only support training in single GPU,\
Please set environment variable: `export CUDA_VISIBLE_DEVICES=[GPU_ID_YOU_WANT_TO_USE]` .'
else:
cpu_num = os.environ.get('CPU_NUM')
assert cpu_num is not None and cpu_num == '1', 'Only support training in single CPU,\
Please set environment variable: `export CPU_NUM=1`.'
#========== Learner ==========
self.lr, self.entropy_coeff = None, None
self.lr_scheduler = PiecewiseScheduler(config['lr_scheduler'])
self.entropy_coeff_scheduler = PiecewiseScheduler(
config['entropy_coeff_scheduler'])
self.total_loss_stat = WindowStat(100)
self.pi_loss_stat = WindowStat(100)
self.vf_loss_stat = WindowStat(100)
self.entropy_stat = WindowStat(100)
self.learn_time_stat = TimeStat(100)
self.start_time = None
# learn thread
self.learn_thread = threading.Thread(target=self.run_learn)
self.learn_thread.setDaemon(True)
self.learn_thread.start()
self.predict_input_queue = queue.Queue()
# predict thread
self.predict_threads = []
for i in six.moves.range(self.config['predict_thread_num']):
predict_thread = threading.Thread(
target=self.run_predict, args=(i, ))
predict_thread.setDaemon(True)
predict_thread.start()
self.predict_threads.append(predict_thread)
#========== Remote Simulator ===========
self.remote_count = 0
self.remote_metrics_queue = queue.Queue()
self.sample_total_steps = 0
self.create_actors()
def learn_data_provider(self):
""" Data generator for fluid.layers.py_reader
"""
B = self.config['train_batch_size']
while True:
sample_data = self.sample_data_queue.get()
self.sample_total_steps += len(sample_data['obs'])
for key in sample_data:
self.batch_buffer[key].extend(sample_data[key])
if len(self.batch_buffer['obs']) >= B:
batch = {}
for key in self.batch_buffer:
batch[key] = np.array(self.batch_buffer[key][:B])
obs_np = batch['obs'].astype('float32')
actions_np = batch['actions'].astype('int64')
advantages_np = batch['advantages'].astype('float32')
target_values_np = batch['target_values'].astype('float32')
self.lr = self.lr_scheduler.step()
self.entropy_coeff = self.entropy_coeff_scheduler.step()
yield [
obs_np, actions_np, advantages_np, target_values_np,
self.lr, self.entropy_coeff
]
for key in self.batch_buffer:
self.batch_buffer[key] = self.batch_buffer[key][B:]
def run_predict(self, thread_id):
""" predict thread
"""
batch_ident = []
batch_obs = []
while True:
ident, obs = self.predict_input_queue.get()
batch_ident.append(ident)
batch_obs.append(obs)
while len(batch_obs) < self.config['max_predict_batch_size']:
try:
ident, obs = self.predict_input_queue.get_nowait()
batch_ident.append(ident)
batch_obs.append(obs)
except queue.Empty:
break
if batch_obs:
batch_obs = np.array(batch_obs)
actions, values = self.agent.sample(batch_obs, thread_id)
for i, ident in enumerate(batch_ident):
self.predict_output_queues[ident].put((actions[i],
values[i]))
batch_ident = []
batch_obs = []
def run_learn(self):
""" Learn loop
"""
while True:
with self.learn_time_stat:
total_loss, pi_loss, vf_loss, entropy = self.agent.learn()
self.total_loss_stat.add(total_loss)
self.pi_loss_stat.add(pi_loss)
self.vf_loss_stat.add(vf_loss)
self.entropy_stat.add(entropy)
def create_actors(self):
""" Connect to the cluster and start sampling of the remote actor.
"""
parl.connect(self.config['master_address'])
logger.info('Waiting for {} remote actors to connect.'.format(
self.config['actor_num']))
ident = 0
self.predict_output_queues = []
for i in six.moves.range(self.config['actor_num']):
self.remote_count += 1
logger.info('Remote simulator count: {}'.format(self.remote_count))
if self.start_time is None:
self.start_time = time.time()
q = queue.Queue()
self.predict_output_queues.append(q)
remote_thread = threading.Thread(
target=self.run_remote_sample, args=(ident, ))
remote_thread.setDaemon(True)
remote_thread.start()
ident += 1
def run_remote_sample(self, ident):
""" Interacts with remote simulator.
"""
remote_actor = Actor(self.config)
mem = defaultdict(list)
obs = remote_actor.reset()
while True:
self.predict_input_queue.put((ident, obs))
action, value = self.predict_output_queues[ident].get()
next_obs, reward, done = remote_actor.step(action)
mem['obs'].append(obs)
mem['actions'].append(action)
mem['rewards'].append(reward)
mem['values'].append(value)
if done:
next_value = 0
advantages = calc_gae(mem['rewards'], mem['values'],
next_value, self.config['gamma'],
self.config['lambda'])
target_values = advantages + mem['values']
self.sample_data_queue.put({
'obs': mem['obs'],
'actions': mem['actions'],
'advantages': advantages,
'target_values': target_values
})
mem = defaultdict(list)
next_obs = remote_actor.reset()
elif len(mem['obs']) == self.config['t_max'] + 1:
next_value = mem['values'][-1]
advantages = calc_gae(mem['rewards'][:-1], mem['values'][:-1],
next_value, self.config['gamma'],
self.config['lambda'])
target_values = advantages + mem['values'][:-1]
self.sample_data_queue.put({
'obs': mem['obs'][:-1],
'actions': mem['actions'][:-1],
'advantages': advantages,
'target_values': target_values
})
for key in mem:
mem[key] = [mem[key][-1]]
obs = next_obs
if done:
metrics = remote_actor.get_metrics()
if metrics:
self.remote_metrics_queue.put(metrics)
def log_metrics(self):
""" Log metrics of learner and simulators
"""
if self.start_time is None:
return
metrics = []
while True:
try:
metric = self.remote_metrics_queue.get_nowait()
metrics.append(metric)
except queue.Empty:
break
episode_rewards, episode_steps = [], []
for x in metrics:
episode_rewards.extend(x['episode_rewards'])
episode_steps.extend(x['episode_steps'])
max_episode_rewards, mean_episode_rewards, min_episode_rewards, \
max_episode_steps, mean_episode_steps, min_episode_steps =\
None, None, None, None, None, None
if episode_rewards:
mean_episode_rewards = np.mean(np.array(episode_rewards).flatten())
max_episode_rewards = np.max(np.array(episode_rewards).flatten())
min_episode_rewards = np.min(np.array(episode_rewards).flatten())
mean_episode_steps = np.mean(np.array(episode_steps).flatten())
max_episode_steps = np.max(np.array(episode_steps).flatten())
min_episode_steps = np.min(np.array(episode_steps).flatten())
metric = {
'Sample steps': self.sample_total_steps,
'max_episode_rewards': max_episode_rewards,
'mean_episode_rewards': mean_episode_rewards,
'min_episode_rewards': min_episode_rewards,
'max_episode_steps': max_episode_steps,
'mean_episode_steps': mean_episode_steps,
'min_episode_steps': min_episode_steps,
'total_loss': self.total_loss_stat.mean,
'pi_loss': self.pi_loss_stat.mean,
'vf_loss': self.vf_loss_stat.mean,
'entropy': self.entropy_stat.mean,
'learn_time_s': self.learn_time_stat.mean,
'elapsed_time_s': int(time.time() - self.start_time),
'lr': self.lr,
'entropy_coeff': self.entropy_coeff,
}
for key, value in metric.items():
if value is not None:
summary.add_scalar(key, value, self.sample_total_steps)
logger.info(metric)
if __name__ == '__main__':
from ga3c_config import config
learner = Learner(config)
assert config['log_metrics_interval_s'] > 0
while True:
time.sleep(config['log_metrics_interval_s'])
learner.log_metrics()