forked from THUDM/CogView
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_samples.py
executable file
·326 lines (284 loc) · 12.7 KB
/
generate_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate GPT2"""
import os
import stat
import random
import numpy as np
import torch
import torch.nn.functional as F
import argparse
import time
from datetime import datetime
from arguments import get_args
from utils import Timers
from pretrain_gpt2 import initialize_distributed
from pretrain_gpt2 import set_random_seed
from utils import load_checkpoint, get_checkpoint_iteration
from data_utils import get_tokenizer
import mpu
import deepspeed
from fp16 import FP16_Module
from model import GPT2Model
from model import DistributedDataParallel as DDP
from utils import print_rank_0
from pretrain_gpt2 import get_model
import math
from copy import deepcopy
from tqdm import tqdm
from generation import get_batch, filling_sequence, add_interlacing_beam_marks, magnify, inverse_prompt_score
from torchvision.utils import save_image
import torch.distributed as dist
def setup_model(args):
"""Setup model and optimizer."""
model = get_model(args)
if args.load is not None:
if args.deepspeed:
iteration, release, success = get_checkpoint_iteration(args)
path = os.path.join(args.load, str(iteration), "mp_rank_00_model_states.pt")
print('current device:', torch.cuda.current_device())
checkpoint = torch.load(path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["module"])
print(f"Load model file {path}")
else:
_ = load_checkpoint(
model, None, None, args, load_optimizer_states=False)
return model
def _parse_and_to_tensor(text, img_size=256, query_template='{}'):
tokenizer = get_tokenizer()
text = query_template.format(*text.split('\t'))
seq = tokenizer.parse_query(text, img_size=img_size)
seq = torch.cuda.LongTensor(seq)
return seq
def get_context(args, query_template='{}'):
tokenizer = get_tokenizer()
terminate_runs = 0
img_size = 256 if args.generation_task != 'low-level super-resolution' else 128
ml = max(args.max_position_embeddings, args.max_position_embeddings_finetune)
output_path = args.output_path
if args.input_source == 'interactive':
assert not args.with_id, '--with-id is only used with file inputs.'
if args.generation_task == 'post-selection':
raise ValueError('post-selection only takes file inputs!')
while True:
raw_text = input("\nPlease Input Query (stop to exit) >>> ")
if not raw_text:
print('Query should not be empty!')
continue
if raw_text == "stop":
return
try:
seq = _parse_and_to_tensor(raw_text, img_size=img_size, query_template=query_template)
except (ValueError, FileNotFoundError) as e:
print(e)
continue
if len(seq) > ml:
print("\nSeq length", len(seq),
f"\nPlease give smaller context than {ml}!")
continue
yield (raw_text, seq, output_path)
else:
with open(args.input_source, 'r') as fin:
inputs = fin.readlines()
for line_no, raw_text in enumerate(inputs):
if line_no % dist.get_world_size() != dist.get_rank():
continue
rk = dist.get_rank()
print(f'Working on No. {line_no} on {rk}... ')
raw_text = raw_text.strip()
if len(raw_text) == 0:
continue
if args.with_id: # with id
parts = raw_text.split('\t')
output_path = os.path.join(args.output_path, parts[0])
raw_text = '\t'.join(parts[1:])
if args.generation_task == 'post-selection':
parts = raw_text.split('\t')
seqs = []
for part in parts[1:]:
try:
seq_single = _parse_and_to_tensor('\t'.join([part, parts[0]]), img_size=img_size, query_template=query_template)
seqs.append(seq_single)
except (ValueError, FileNotFoundError) as e:
print(e)
continue
seq = torch.stack(seqs)
else:
try:
seq = _parse_and_to_tensor(raw_text, img_size=img_size, query_template=query_template)
except (ValueError, FileNotFoundError) as e:
print(e)
continue
if len(seq) > ml:
print("\nSeq length", len(seq),
f"\nPlease give smaller context than {ml}!")
continue
yield (raw_text, seq, output_path)
def generate_images_once(model, args, raw_text, seq=None, num=8, query_template='{}', output_path='./samples'):
tokenizer = get_tokenizer()
if not os.path.exists(output_path):
os.makedirs(output_path)
if seq is None: # need parse
img_size = 256 if args.generation_task != 'low-level super-resolution' else 128
seq = _parse_and_to_tensor(raw_text, img_size=img_size, query_template=query_template)
model.eval()
with torch.no_grad():
print('show raw text:', raw_text)
start_time = time.time()
if args.generation_task in ['text2image', 'low-level super-resolution']:
invalid_slices = [slice(tokenizer.img_tokenizer.num_tokens, None)]
elif args.generation_task == 'image2text':
invalid_slices = [slice(0, tokenizer.img_tokenizer.num_tokens)]
else:
NotImplementedError
mbz = args.max_inference_batch_size
add_interlacing_beam_marks(seq, nb=min(num, mbz))
assert num < mbz or num % mbz == 0
output_tokens_list = []
for tim in range(max(num // mbz, 1)):
output_tokens_list.append(filling_sequence(model, seq.clone(), args))
torch.cuda.empty_cache()
output_tokens_list = torch.cat(output_tokens_list, dim=0)
print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
print("\nContext:", raw_text, flush=True)
imgs, txts = [], []
for seq in output_tokens_list:
decoded_txts, decoded_imgs = tokenizer.DecodeIds(seq.tolist())
for i in range(len(decoded_imgs)):
if decoded_imgs[i].shape[-1] == 128:
decoded_imgs[i] = torch.nn.functional.interpolate(decoded_imgs[i], size=(256, 256))
if args.debug:
imgs.extend(decoded_imgs)
else:
imgs.append(decoded_imgs[-1]) # only the last image (target)
txts.append(decoded_txts)
if args.generation_task == 'image2text':
print(txts)
return
if args.debug:
output_file_prefix = raw_text.replace('/', '')[:20]
output_file = os.path.join(output_path, f"{output_file_prefix}-{datetime.now().strftime('%m-%d-%H-%M-%S')}.jpg")
imgs = torch.cat(imgs, dim=0)
print(txts)
print("\nSave to: ", output_file, flush=True)
save_image(imgs, output_file, normalize=True)
else:
print("\nSave to: ", output_path, flush=True)
for i in range(len(imgs)):
save_image(imgs[i], os.path.join(output_path,f'{i}.jpg'), normalize=True)
os.chmod(os.path.join(output_path,f'{i}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
save_image(torch.cat(imgs, dim=0), os.path.join(output_path,f'concat.jpg'), normalize=True)
os.chmod(os.path.join(output_path,f'concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
def generate_images_continually(model, args):
if args.generation_task == 'text2image':
query_template = '[ROI1] {} [BASE] [BOI1] [MASK]*1024'
elif args.generation_task == 'image2text':
query_template = '[BASE] [BOI1] [Image]{} [EOI1] [ROI1] [MASK]*20'
elif args.generation_task == 'low-level super-resolution':
query_template = '[ROI1] {} [BASE] [BOI1] [Image]{} [EOI1] [ROI2] [POS0] [BASE] [BOI2] [MASK]*1024'
elif args.generation_task == 'super-resolution':
query_template = '[ROI1] {} [BASE] [BOI1] [Image]{}'
elif args.generation_task == 'post-selection':
query_template = '[BASE] [BOI1] [Image]{} [EOI1] [ROI1] {}'
else:
raise NotImplementedError
for raw_text, seq, output_path in get_context(args, query_template):
if args.generation_task == 'super-resolution':
super_resolution(model, args, raw_text, seq, output_path=output_path)
elif args.generation_task == 'post-selection':
post_selection(model, args, raw_text, seq, output_path=output_path)
else:
generate_images_once(model, args, raw_text, seq, num=args.batch_size, output_path=output_path)
def super_resolution(model, args, raw_text, seq, output_path="./samples"):
tokenizer = get_tokenizer()
model.eval()
if not os.path.exists(output_path):
os.makedirs(output_path)
with torch.no_grad():
start_time = time.time()
output_tokens_list = magnify(model, tokenizer, seq[-32**2:], seq[:-32**2], args)
print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
print("\nContext:", raw_text, flush=True)
output_file_prefix = raw_text.replace('/', '')[:20]
output_file = os.path.join(output_path, f"{output_file_prefix}-{datetime.now().strftime('%m-%d-%H-%M-%S')}.jpg")
imgs = []
if args.debug:
imgs.append(torch.nn.functional.interpolate(tokenizer.img_tokenizer.DecodeIds(seq[-32**2:]), size=(512, 512)))
for seq in output_tokens_list:
decoded_txts, decoded_imgs = tokenizer.DecodeIds(seq.tolist())
imgs.extend(decoded_imgs)
imgs = torch.cat(imgs, dim=0)
print("\nSave to: ", output_file, flush=True)
save_image(imgs, output_file, normalize=True)
def post_selection(model, args, raw_text, seq, output_path):
tokenizer = get_tokenizer()
model.eval()
if not os.path.exists(output_path):
os.makedirs(output_path)
with torch.no_grad():
start_time = time.time()
num = seq.shape[0]
mbz = args.max_inference_batch_size
assert num < mbz or num % mbz == 0
scores = [inverse_prompt_score(model, seq[tim*mbz:(tim+1)*mbz], args)
for tim in range(max(num // mbz, 1))
]
scores = torch.cat(scores, dim=0)
# scores = inverse_prompt_score(model, seq, args) # once
print("\nTaken time {:.2f}\n".format(time.time() - start_time), flush=True)
print("\nContext:", raw_text, flush=True)
rank = dist.get_rank()
output_file = os.path.join(output_path, f"scores_rank_{rank}.txt")
with open(output_file, 'a') as fout:
fout.write(raw_text+'\n')
fout.write('\t'.join([str(x) for x in scores.tolist()])+'\n')
print("\nSave to: ", output_file, flush=True)
def prepare_tokenizer(args):
tokenizer = get_tokenizer(args)
num_tokens = tokenizer.num_tokens
before = num_tokens
after = before
multiple = args.make_vocab_size_divisible_by * \
mpu.get_model_parallel_world_size()
while (after % multiple) != 0:
after += 1
print_rank_0('> padded vocab (size: {}) with {} dummy '
'tokens (new size: {})'.format(
before, after - before, after))
args.vocab_size = after
print("prepare tokenizer done", flush=True)
return tokenizer
def main():
"""Main training program."""
print('Generate Samples')
# Disable CuDNN.
torch.backends.cudnn.enabled = False
# Arguments.
args = get_args()
# Pytorch distributed.
initialize_distributed(args)
# set device, this args.device is only used in inference
if args.device is not None:
device = int(args.device)
torch.cuda.set_device(device)
# Random seeds for reproducability.
set_random_seed(args.seed)
# get the tokenizer
tokenizer = prepare_tokenizer(args)
# Model, optimizer, and learning rate.
model = setup_model(args)
generate_images_continually(model, args)
if __name__ == "__main__":
main()