-
Notifications
You must be signed in to change notification settings - Fork 18
/
scene_loss_utils.py
282 lines (225 loc) · 12.1 KB
/
scene_loss_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python
# coding=utf-8
import os
import sys
import math
import importlib
from scipy.optimize import linear_sum_assignment
import torch
import torch.nn as nn
import numpy as np
import time
from functools import wraps
def timing(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.perf_counter()
r = func(*args, **kwargs)
end = time.perf_counter()
print('{}.{} : {}'.format(func.__module__, func.__name__, end - start))
return r
return wrapper
def smooth_l1_loss(input, target, beta=1.0, size_average=True):
"""
very similar to the smooth_l1_loss from pytorch, but with
the extra beta parameter. Huber loss
"""
n = torch.abs(input - target)
cond = n < beta
loss = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if size_average:
return loss.mean()
return loss.sum()
''' --------------------Absolute Pose Representation Loss---------------'''
def linear_assignment_class(distance_mat, row_counts=None, col_masks=None):
'''
If rows_counts & col_counts are both None, then distance matrix has
the same size as distance_mat. Else if rows_counts != None, meaning
for each batch i, row size of the distance matrix is rows_counts[i].
@Args:
distance_mat: (B, num_class, num_each_class, num_each_class), row->col: from gt to pred
row_counts: (B, num_class), In our case is GT num of parts of i-th class in each batch
col_masks: (B, num_class, num_each_class), tensor of 1s and 0s.
@Returns:
(batch_idx, row_ind) is the index of GT(MAX_NUM_PARTS, feat_dim)
(batch_idx, col_ind) is the index of pred(MAX_NUM_PARTS, feat_dim)
batch_ind: list, len = \sum row_counts_i
row_ind: list, len = \sum row_counts_i
col_ind: list, len = \sum row_counts_i
'''
batch_size = distance_mat.shape[0]
num_class = distance_mat.shape[1]
num_each_class = distance_mat.shape[2]
batch_ind = []
row_ind = []
col_ind = []
for i in range(batch_size):
for j in range(num_class):
dmat = distance_mat[i, j, :, :]
if row_counts is not None:
dmat = dmat[:row_counts[i, j], :]
if col_masks is not None:
col_idx = torch.nonzero(col_masks[i, j])[:, 0]
dmat = dmat[:, col_idx]
rind, cind = linear_sum_assignment(dmat.detach().to('cpu').numpy())
rind = list(rind + num_each_class * j)
if col_masks is None:
cind = list(cind + num_each_class * j)
else:
cind = list(col_idx[cind] + num_each_class * j)
batch_ind += [i]*len(rind)
row_ind += rind
col_ind += cind
return batch_ind, row_ind, col_ind
def compute_abs_all_match_loss_classify_angle(X_abs_gt, X_abs_pred, num_class=30, num_each_class=4, is_unmatched_loss=False):
''' Loss for representations of parts
@Args:
X_abs_gt: (B, MAX_NUM_PARTS, dim=9)
X_abs_pred: (B, MAX_NUM_PARTS, dim=16)
@Returns:
'''
batch_size, max_num_parts, abs_dim = X_abs_gt.shape[0], X_abs_gt.shape[1], X_abs_gt.shape[2]
num_class = num_class
num_each_class = num_each_class
assert(max_num_parts == num_class * num_each_class)
X_abs_pred_prob = X_abs_pred[:, :, 9:]
# Compute distance matrix
dist_mat = torch.zeros((batch_size, num_class, num_each_class, num_each_class))
for b in range(batch_size):
for c in range(num_class):
offset = c * num_each_class
# x_gt_tile = X_abs_gt[b, offset : offset + num_each_class, :].unsqueeze(1).repeat(1, num_each_class, 1) # (r, n, f)
# x_pred_tile = X_abs_pred_prob[b, offset : offset + num_each_class, :].unsqueeze(0).repeat(num_each_class, 1, 1) # (r, n, f)
dist_mat[b, c] = torch.norm(X_abs_gt[b, offset : offset + num_each_class, 9:].unsqueeze(1) -
X_abs_pred_prob[b, offset : offset + num_each_class, :].unsqueeze(0), dim=2) # (n, n), only first r rows valid
batch_idx, matched_gt_idx, matched_pred_idx = linear_assignment_class(dist_mat)
if is_unmatched_loss:
error = X_abs_gt[batch_idx, matched_gt_idx] - X_abs_pred_prob[batch_idx, matched_pred_idx]
abs_rep_loss = torch.sum(error * error) / batch_size / max_num_parts
else:
X_abs_gt_cat_match = X_abs_gt[batch_idx, matched_gt_idx] # (batch_size * max_num_parts, feature_dim)
X_abs_pred_cat_match = X_abs_pred[batch_idx, matched_pred_idx]
X_abs_gt_cat = X_abs_gt_cat_match[:, 9:] # (batch_size * max_num_parts, feature_dim)
X_abs_pred_cat = X_abs_pred_cat_match[:, 9:]
mask = X_abs_gt_cat[:, -1:]
X_abs_pred_cat_new = torch.cat([X_abs_pred_cat[:, :-1] * mask, X_abs_pred_cat[:, -1:]], dim=1)
abs_rep_loss = smooth_l1_loss(X_abs_pred_cat_new, X_abs_gt_cat, beta=0.5)
abs_rep_loss = abs_rep_loss * (abs_dim - 9)
angle_pred = X_abs_pred_cat_match[:, :9]
angle_gt = X_abs_gt_cat_match[:, :9]
criterion_angle = nn.CrossEntropyLoss()
angle_index = torch.nonzero(angle_gt[:, :8])
angle_label = angle_index[:, 1]
angle_class_loss = criterion_angle(angle_pred[angle_index[:, 0], :8], angle_label)
angle_residual_loss = smooth_l1_loss(angle_pred[:, -1], angle_gt[:, -1])
return angle_class_loss, angle_residual_loss, abs_rep_loss, batch_idx, matched_gt_idx, matched_pred_idx
def compute_rel_all_match_loss_discrete(X_rel_gt, X_rel_pred, batch_idx,
matched_gt_idx, matched_pred_idx,
num_class=30, num_each_class=4,
halfRange=6, interval=0.3, room_type=None):
''' Loss for representations of parts
@Args:
X_rel_gt: (B, MAX_NUM_PARTS, MAX_NUM_PARTS, dim)
X_rel_pred: (B, MAX_NUM_PARTS, MAX_NUM_PARTS, dim)
@Returns:
'''
batch_size, max_num_parts = X_rel_gt.shape[0], X_rel_gt.shape[1]
num_class = num_class
num_each_class = num_each_class
assert(max_num_parts == num_class * num_each_class)
num_bins = int(halfRange / interval + 1)
X_rel_pred_prob = X_rel_pred
num_rel = 0
num_rel_off = 0
error_tn_I_x = torch.zeros(1).to(X_rel_gt.device)
error_tn_I_y = torch.zeros(1).to(X_rel_gt.device)
error_tn_class_x = torch.zeros(1).to(X_rel_gt.device)
error_tn_class_y = torch.zeros(1).to(X_rel_gt.device)
error_tn_res_x = torch.zeros(1).to(X_rel_gt.device)
error_tn_res_y = torch.zeros(1).to(X_rel_gt.device)
error_z = torch.zeros(1).to(X_rel_gt.device)
error_rotation_class = torch.zeros(1).to(X_rel_gt.device)
error_same_size = torch.zeros(1).to(X_rel_gt.device)
error_rel_size = torch.zeros(1).to(X_rel_gt.device)
criterion_tn_class = nn.CrossEntropyLoss(reduction='none')
criterion_tn_I = nn.BCEWithLogitsLoss(reduction='none')
criterion_rotation_class = nn.CrossEntropyLoss(reduction='none')
criterion_same_size = nn.BCEWithLogitsLoss(reduction='none')
for b in range(batch_size):
ind = np.where(np.array(batch_idx)==b)[0]
gt_ind = np.array(matched_gt_idx)[ind].tolist()
pred_ind = np.array(matched_pred_idx)[ind].tolist()
if len(pred_ind) == 0:
continue
gt = X_rel_gt[b][gt_ind, :][:, gt_ind]
pred = X_rel_pred_prob[b][pred_ind, :][:, pred_ind]
mask = gt[:, :, -1:]
pred_masked = pred * mask
num_rel += torch.sum(mask)
error_z += smooth_l1_loss(pred_masked[:, :, -7], gt[:, :, -5], beta=0.5, size_average=False)
error_tn_res_x += smooth_l1_loss(pred_masked[:, :, -9], gt[:, :, -7], beta=0.5, size_average=False)
error_tn_res_y += smooth_l1_loss(pred_masked[:, :, -8], gt[:, :, -6], beta=0.5, size_average=False)
error_rel_size += smooth_l1_loss(pred_masked[:, :, -2], gt[:, :, -2], beta=0.5, size_average=False)
first_nonzero_index = torch.nonzero(mask)[0, 0]
index = torch.where(mask[first_nonzero_index, :, 0])[0]
n = index.shape[0]
error_mat_tn_I_x = criterion_tn_I(pred_masked[index, :][:, index][None, :, :, 0], gt[index, :][:, index][None, :, :, 0])
error_mat_tn_I_y = criterion_tn_I(pred_masked[index, :][:, index][None, :, :, 1], gt[index, :][:, index][None, :, :, 1])
error_mat_tn_class_x = criterion_tn_class(pred_masked[index, :][:, index][None, :, :, 2 : 2+num_bins ].permute(0, 3, 1, 2), gt[index, :][:, index][None, :, :, 2].long())
error_mat_tn_class_y = criterion_tn_class(pred_masked[index, :][:, index][None, :, :, 2+num_bins : 2+2*num_bins].permute(0, 3, 1, 2), gt[index, :][:, index][None, :, :, 3].long())
error_mat_rotation_class = criterion_rotation_class(pred_masked[index, :][:, index][None, :, :, -6:-3].permute(0, 3, 1, 2), gt[index, :][:, index][None, :, :, -4].long())
error_mat_same_size = criterion_same_size(pred_masked[index, :][:, index][None, :, :, -3], gt[index, :][:, index][None, :, :, -3])
valid_mask = (torch.ones((n, n)) - torch.eye(n))[None, ...].to(X_rel_gt.device)
error_tn_I_x += torch.sum(error_mat_tn_I_x * valid_mask)
error_tn_I_y += torch.sum(error_mat_tn_I_y * valid_mask)
if room_type == 'bedroom':
error_tn_class_x += torch.sum(error_mat_tn_class_x * valid_mask)
error_tn_class_y += torch.sum(error_mat_tn_class_y * valid_mask)
else: # livingroom
error_tn_class_x += torch.sum(error_mat_tn_class_x)
error_tn_class_y += torch.sum(error_mat_tn_class_y)
error_rotation_class += torch.sum(error_mat_rotation_class * valid_mask)
error_same_size += torch.sum(error_mat_same_size * valid_mask)
num_rel_off += torch.sum(mask) - n
loss_z = error_z / (num_rel + 1e-12)
loss_tn_res = (error_tn_res_x + error_tn_res_y) / (num_rel + 1e-12)
if room_type == 'bedroom':
loss_tn_class = (error_tn_class_x + error_tn_class_y) / (num_rel_off + 1e-12)
else:
loss_tn_class = (error_tn_class_x + error_tn_class_y) / (num_rel + 1e-12)
loss_tn_I = (error_tn_I_x + error_tn_I_y) / (num_rel_off + 1e-12)
loss_rotation_class = error_rotation_class / (num_rel_off + 1e-12)
loss_same_size = error_same_size / (num_rel_off + 1e-12)
loss_rel_size = error_rel_size / (num_rel + 1e-12)
return loss_tn_I, loss_tn_class, loss_tn_res, loss_z, loss_rotation_class, loss_same_size, loss_rel_size
def get_loss(room_type, X_abs_gt, X_abs_pred, X_rel_gt, X_rel_pred, num_class=30, num_each_class=4):
BATCH_SIZE = X_abs_gt.shape[0]
loss_dict = {}
angle_class_loss, angle_residual_loss, abs_rep_loss, batch_idx, matched_gt_idx, matched_pred_idx = compute_abs_all_match_loss_classify_angle(X_abs_gt, X_abs_pred, num_class, num_each_class)
loss_tn_I, loss_tn_class, loss_tn_res, loss_z, loss_rotation_class, loss_same_size, loss_rel_size = compute_rel_all_match_loss_discrete(X_rel_gt, X_rel_pred, batch_idx, matched_gt_idx, matched_pred_idx, num_class, num_each_class, room_type=room_type)
# Adjust parameters
angle_class_loss = angle_class_loss * 0.1
angle_residual_loss = angle_residual_loss
abs_rep_loss = abs_rep_loss
loss_tn_I = loss_tn_I
loss_tn_class = loss_tn_class * 0.1
loss_tn_res = loss_tn_res
loss_z = loss_z
loss_rotation_class = loss_rotation_class * 0.1
loss_same_size = loss_same_size
loss_rel_size = loss_rel_size
# Total loss
loss = angle_class_loss + angle_residual_loss + abs_rep_loss + loss_tn_I + loss_tn_class + loss_tn_res + loss_z + loss_rotation_class + loss_same_size + loss_rel_size
# Record loss
loss_dict['angle_class_loss'] = angle_class_loss
loss_dict['angle_residual_loss'] = angle_residual_loss
loss_dict['abs_rep_loss'] = abs_rep_loss
loss_dict['loss_tn_I'] = loss_tn_I
loss_dict['loss_tn_class'] = loss_tn_class
loss_dict['loss_tn_res'] = loss_tn_res
loss_dict['loss_z'] = loss_z
loss_dict['loss_rotation_class'] = loss_rotation_class
loss_dict['loss_same_size'] = loss_same_size
loss_dict['loss_rel_size'] = loss_rel_size
loss_dict['loss'] = loss
return loss, loss_dict, batch_idx, matched_gt_idx, matched_pred_idx