forked from jizongFox/Contrast-You
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathamp.py
45 lines (34 loc) · 1.49 KB
/
amp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from functools import lru_cache
from loguru import logger
from torch.cuda.amp import GradScaler, autocast
@lru_cache(maxsize=1)
def _warning(accumulate_iter):
logger.warning(
f"._accumulate_iter={accumulate_iter} > 1, may reduce performance.")
class AMPScaler:
def __init__(self, *, scaler: GradScaler, accumulate_iter: int = 1) -> None:
self.scaler = scaler
assert accumulate_iter >= 1
self._accumulate_iter = accumulate_iter
if self._accumulate_iter > 1:
_warning(self._accumulate_iter)
def scale_loss(self, loss):
return self.scaler.scale(loss / self._accumulate_iter)
def optimizer_step(self, optimizer, *, cur_iter: int):
"""this step updates the optimizer and the scaler in the same time."""
if cur_iter % self._accumulate_iter == (self._accumulate_iter - 1):
self.scaler.step(optimizer)
self.scaler.update()
if self._accumulate_iter > 1 and cur_iter <= 10:
logger.trace(f"iter: {cur_iter}, step optimizer")
def optimizer_zero(self, optimizer, *, cur_iter: int):
if cur_iter % self._accumulate_iter == 0:
optimizer.zero_grad()
if self._accumulate_iter > 1 and cur_iter <= 10:
logger.trace(f"iter: {cur_iter}, zero optimizer")
@property
def use_mixed_train(self) -> bool:
return self.scaler._enabled # noqa
@property
def autocast(self):
return autocast(enabled=self.use_mixed_train)