diff --git a/libs/core/langchain_core/utils/function_calling.py b/libs/core/langchain_core/utils/function_calling.py index 1a1c26443c7869..3aff07faecd4ce 100644 --- a/libs/core/langchain_core/utils/function_calling.py +++ b/libs/core/langchain_core/utils/function_calling.py @@ -341,7 +341,7 @@ def convert_to_openai_function( A dictionary, Pydantic BaseModel class, TypedDict class, a LangChain Tool object, or a Python function. If a dictionary is passed in, it is assumed to already be a valid OpenAI function, a JSON schema with - top-level 'title' and 'description' keys specified, an Anthropic format + top-level 'title' key specified, an Anthropic format tool, or an Amazon Bedrock Converse format tool. strict: If True, model output is guaranteed to exactly match the JSON Schema @@ -366,40 +366,47 @@ def convert_to_openai_function( .. versionchanged:: 0.3.14 Support for Amazon Bedrock Converse format tools added. + + .. versionchanged:: 0.3.16 + + 'description' and 'parameters' keys are now optional. Only 'name' is + required and guaranteed to be part of the output. """ from langchain_core.tools import BaseTool - # already in OpenAI function format - if isinstance(function, dict) and all( - k in function for k in ("name", "description", "parameters") - ): - oai_function = function - # a JSON schema with title and description - elif isinstance(function, dict) and all( - k in function for k in ("title", "description", "properties") - ): - function = function.copy() - oai_function = { - "name": function.pop("title"), - "description": function.pop("description"), - "parameters": function, - } # an Anthropic format tool - elif isinstance(function, dict) and all( - k in function for k in ("name", "description", "input_schema") + if isinstance(function, dict) and all( + k in function for k in ("name", "input_schema") ): oai_function = { "name": function["name"], - "description": function["description"], "parameters": function["input_schema"], } + if "description" in function: + oai_function["description"] = function["description"] # an Amazon Bedrock Converse format tool elif isinstance(function, dict) and "toolSpec" in function: oai_function = { "name": function["toolSpec"]["name"], - "description": function["toolSpec"]["description"], "parameters": function["toolSpec"]["inputSchema"]["json"], } + if "description" in function["toolSpec"]: + oai_function["description"] = function["toolSpec"]["description"] + # already in OpenAI function format + elif isinstance(function, dict) and "name" in function: + oai_function = { + k: v + for k, v in function.items() + if k in ("name", "description", "parameters", "strict") + } + # a JSON schema with title and description + elif isinstance(function, dict) and "title" in function: + function_copy = function.copy() + oai_function = {"name": function_copy.pop("title")} + if "description" in function_copy: + oai_function["description"] = function_copy.pop("description") + if function_copy and "properties" in function_copy: + oai_function["parameters"] = function_copy elif isinstance(function, type) and is_basemodel_subclass(function): oai_function = cast(dict, convert_pydantic_to_openai_function(function)) elif is_typeddict(function): @@ -420,6 +427,13 @@ def convert_to_openai_function( raise ValueError(msg) if strict is not None: + if "strict" in oai_function and oai_function["strict"] != strict: + msg = ( + f"Tool/function already has a 'strict' key wth value " + f"{oai_function['strict']} which is different from the explicit " + f"`strict` arg received {strict=}." + ) + raise ValueError(msg) oai_function["strict"] = strict if strict: # As of 08/06/24, OpenAI requires that additionalProperties be supplied and @@ -438,12 +452,16 @@ def convert_to_openai_tool( ) -> dict[str, Any]: """Convert a tool-like object to an OpenAI tool schema. + OpenAI tool schema reference: + https://platform.openai.com/docs/api-reference/chat/create#chat-create-tools + Args: tool: Either a dictionary, a pydantic.BaseModel class, Python function, or - BaseTool. If a dictionary is passed in, it is assumed to already be a valid - OpenAI tool, OpenAI function, a JSON schema with top-level 'title' and - 'description' keys specified, or an Anthropic format tool. + BaseTool. If a dictionary is passed in, it is + assumed to already be a valid OpenAI function, a JSON schema with + top-level 'title' key specified, an Anthropic format + tool, or an Amazon Bedrock Converse format tool. strict: If True, model output is guaranteed to exactly match the JSON Schema provided in the function definition. If None, ``strict`` argument will not @@ -460,6 +478,15 @@ def convert_to_openai_tool( .. versionchanged:: 0.3.13 Support for Anthropic format tools added. + + .. versionchanged:: 0.3.14 + + Support for Amazon Bedrock Converse format tools added. + + .. versionchanged:: 0.3.16 + + 'description' and 'parameters' keys are now optional. Only 'name' is + required and guaranteed to be part of the output. """ if isinstance(tool, dict) and tool.get("type") == "function" and "function" in tool: return tool diff --git a/libs/core/tests/unit_tests/utils/test_function_calling.py b/libs/core/tests/unit_tests/utils/test_function_calling.py index 1bd43c193103c1..4eaa3da2b19ab0 100644 --- a/libs/core/tests/unit_tests/utils/test_function_calling.py +++ b/libs/core/tests/unit_tests/utils/test_function_calling.py @@ -459,6 +459,130 @@ def my_function(arg1: Nested) -> None: assert actual == expected +json_schema_no_description_no_params = { + "title": "dummy_function", +} + + +json_schema_no_description = { + "title": "dummy_function", + "type": "object", + "properties": { + "arg1": {"description": "foo", "type": "integer"}, + "arg2": { + "description": "one of 'bar', 'baz'", + "enum": ["bar", "baz"], + "type": "string", + }, + }, + "required": ["arg1", "arg2"], +} + + +anthropic_tool_no_description = { + "name": "dummy_function", + "input_schema": { + "type": "object", + "properties": { + "arg1": {"description": "foo", "type": "integer"}, + "arg2": { + "description": "one of 'bar', 'baz'", + "enum": ["bar", "baz"], + "type": "string", + }, + }, + "required": ["arg1", "arg2"], + }, +} + + +bedrock_converse_tool_no_description = { + "toolSpec": { + "name": "dummy_function", + "inputSchema": { + "json": { + "type": "object", + "properties": { + "arg1": {"description": "foo", "type": "integer"}, + "arg2": { + "description": "one of 'bar', 'baz'", + "enum": ["bar", "baz"], + "type": "string", + }, + }, + "required": ["arg1", "arg2"], + } + }, + } +} + + +openai_function_no_description = { + "name": "dummy_function", + "parameters": { + "type": "object", + "properties": { + "arg1": {"description": "foo", "type": "integer"}, + "arg2": { + "description": "one of 'bar', 'baz'", + "enum": ["bar", "baz"], + "type": "string", + }, + }, + "required": ["arg1", "arg2"], + }, +} + + +openai_function_no_description_no_params = { + "name": "dummy_function", +} + + +@pytest.mark.parametrize( + "func", + [ + anthropic_tool_no_description, + json_schema_no_description, + bedrock_converse_tool_no_description, + openai_function_no_description, + ], +) +def test_convert_to_openai_function_no_description(func: dict) -> None: + expected = { + "name": "dummy_function", + "parameters": { + "type": "object", + "properties": { + "arg1": {"description": "foo", "type": "integer"}, + "arg2": { + "description": "one of 'bar', 'baz'", + "enum": ["bar", "baz"], + "type": "string", + }, + }, + "required": ["arg1", "arg2"], + }, + } + actual = convert_to_openai_function(func) + assert actual == expected + + +@pytest.mark.parametrize( + "func", + [ + json_schema_no_description_no_params, + openai_function_no_description_no_params, + ], +) +def test_convert_to_openai_function_no_description_no_params(func: dict) -> None: + expected = { + "name": "dummy_function", + } + actual = convert_to_openai_function(func) + assert actual == expected + + @pytest.mark.xfail( reason="Pydantic converts Optional[str] to str in .model_json_schema()" )