-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathOurRun.py
297 lines (250 loc) · 13.4 KB
/
OurRun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# -*- coding: utf-8 -*-
'''
Writen by YanXu, FangYueran and ZhangTianyang
Partly adapted from BiDAF
'''
import os
import pickle
import logging
import argparse
from dataloader.OurDataLoader import DataLoader
from VocabBuild.OurVocab import Vocab
from model.OurModel import Model
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
'''Which dataset do you want to use, just choose between search and zhidao'''
dataName = 'zhidao'
def parse_args():
'''
--All argument of our model--
In our experiment, we use:
--prepare
--train --decay 0.9999 --epoch 10
--evaluate --dropout 0
--predict --dropout 0
'''
parser = argparse.ArgumentParser('Reading Comprehension on BaiduRC dataset')
parser.add_argument('--prepare', action='store_true',
help='create the directories, prepare to process the vocabulary and embeddings')
parser.add_argument('--train', action='store_true',
help='train the model')
parser.add_argument('--evaluate', action='store_true',
help='evaluate the model on dev set')
parser.add_argument('--predict', action='store_true',
help='predict the answers for test set with trained model')
parser.add_argument('--gpu', type=str, default='1',
help='specify gpu device')
train_settings = parser.add_argument_group('train settings')
train_settings.add_argument('--algo', type=str, default='qanet',
help='algorithm')
train_settings.add_argument('--loss_type', type=str, default='cross_entropy',
help='loss fn')
train_settings.add_argument('--fix_pretrained_vector', type=bool, default=True,
help='fixed pretrained vector')
train_settings.add_argument('--optim', default='adam',
help='optimizer type')
train_settings.add_argument('--learning_rate', type=float, default=0.00005,
help='learning rate')
train_settings.add_argument('--weight_decay', type=float, default=1e-5,
help='loss weight decay')
train_settings.add_argument('--decay', type=float, default=None,
help='decay')
train_settings.add_argument('--l2_norm', type=float, default=3e-7,
help='l2 norm')
train_settings.add_argument('--clip_weight', type=bool, default=True,
help='clip weight')
train_settings.add_argument('--max_norm_grad', type=float, default=5.0,
help='max norm grad')
train_settings.add_argument('--dropout', type=float, default=0,
help='dropout rate')
train_settings.add_argument('--batch_size', type=int, default=16,
help='train batch size')
train_settings.add_argument('--epochs', type=int, default=10,
help='train epochs')
model_settings = parser.add_argument_group('model settings')
model_settings.add_argument('--word_embed_size', type=int, default=150,
help='size of the word embeddings')
model_settings.add_argument('--char_embed_size', type=int, default=32,
help='size of the char embeddings')
model_settings.add_argument('--hidden_size', type=int, default=64,
help='size of hidden units')
model_settings.add_argument('--head_size', type=int, default=1,
help='size of head in multihead-attention')
model_settings.add_argument('--max_p_num', type=int, default=5,
help='max passage num in one sample')
model_settings.add_argument('--max_p_len', type=int, default=400,
help='max length of passage')
model_settings.add_argument('--max_q_len', type=int, default=60,
help='max length of question')
model_settings.add_argument('--max_a_len', type=int, default=200,
help='max length of answer')
model_settings.add_argument('--max_ch_len', type=int, default=20,
help='max length of character of a word')
model_settings.add_argument('--use_position_attn', type=bool, default=True, ### Our improvement ###
help='use position attention')
path_settings = parser.add_argument_group('path settings')
path_settings.add_argument('--train_files', nargs='+',
default=['./data/demo/'+dataName+'.train20000.json'],
help='list of files that contain the preprocessed train data')
path_settings.add_argument('--dev_files', nargs='+',
default=['./data/demo/'+dataName+'.dev10000.json'],
help='list of files that contain the preprocessed dev data')
path_settings.add_argument('--test_files', nargs='+',
default=['./data/demo/'+dataName+'.test.json'],
help='list of files that contain the preprocessed test data')
path_settings.add_argument('--save_dir', default='./data/baidu',
help='the dir with preprocessed baidu reading comprehension data')
path_settings.add_argument('--vocab_dir', default='./data/vocab/'+dataName+'/',
help='the dir to save vocabulary')
path_settings.add_argument('--model_dir', default='./data/models/Our/'+dataName+'/',
help='the dir to store models')
path_settings.add_argument('--result_dir', default='./data/results/Our/'+dataName+'/',
help='the dir to output the results')
path_settings.add_argument('--summary_dir', default='./data/summary/Our/'+dataName+'/',
help='the dir to write tensorboard summary')
path_settings.add_argument('--log_path', default='./data/summary/Our/'+dataName+'/log.txt',
help='path of the log file. If not set, logs are printed to console')
path_settings.add_argument('--pretrained_word_path',
default='./embeding/sgns.target.word-word.dynwin5.thr10.neg5.dim300.iter5',
help='path of the log file. If not set, logs are printed to console')
path_settings.add_argument('--pretrained_char_path',default=None,
help='path of the log file. If not set, logs are printed to console')
return parser.parse_args()
def prepare(args):
"""prepare to process data including building vocab"""
logger = logging.getLogger("QANet")
logger.info("====== preprocessing ======")
logger.info('Checking the data files...')
print('Checking the data files...')
for data_path in args.train_files + args.dev_files + args.test_files:
assert os.path.exists(data_path), '{} file does not exist.'.format(data_path)
logger.info('Preparing the directories...')
print('Preparing the directories...')
for dir_path in [args.vocab_dir, args.model_dir, args.result_dir, args.summary_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger.info('Building vocabulary...')
print('Building vocabulary...')
dataloader = DataLoader(args.max_p_num, args.max_p_len, args.max_q_len, args.max_ch_len,
args.train_files, args.dev_files, args.test_files)
vocab = Vocab(lower=True)
for word in dataloader.word_iter('train'):
vocab.add_word(word)
[vocab.add_char(ch) for ch in word]
unfiltered_vocab_size = vocab.word_size()
vocab.filter_words_by_cnt(min_cnt=2)
filtered_num = unfiltered_vocab_size - vocab.word_size()
logger.info('After filter {} tokens, the final vocab size is {}, char size is {}'.format(filtered_num,
vocab.word_size(), vocab.char_size()))
unfiltered_vocab_char_size = vocab.char_size()
vocab.filter_chars_by_cnt(min_cnt=2)
filtered_char_num = unfiltered_vocab_char_size - vocab.char_size()
logger.info('After filter {} chars, the final char vocab size is {}'.format(filtered_char_num,
vocab.char_size()))
logger.info('Assigning embeddings...')
if args.pretrained_word_path is not None:
vocab.load_pretrained_word_embeddings(args.pretrained_word_path)
else:
vocab.randomly_init_word_embeddings(args.word_embed_size)
if args.pretrained_char_path is not None:
vocab.load_pretrained_char_embeddings(args.pretrained_char_path)
else:
vocab.randomly_init_char_embeddings(args.char_embed_size)
logger.info('Saving vocab...')
print('Saving vocab...')
with open(os.path.join(args.vocab_dir, dataName+'OurVocab.data'), 'wb') as fout:
pickle.dump(vocab, fout)
logger.info('====== Done with preparing! ======')
def train(args):
"""Train"""
logger = logging.getLogger("QANet")
logger.info("====== training ======")
logger.info('Load data_set and vocab...')
print('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, dataName+'OurVocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
dataloader = DataLoader(args.max_p_num, args.max_p_len, args.max_q_len, args.max_ch_len,
args.train_files, args.dev_files)
logger.info('Converting text into ids...')
dataloader.convert_to_ids(vocab)
logger.info('Initialize the model...')
model = Model(vocab, args)
logger.info('Training the model...')
print('Training the model...')
model.train(dataloader, args.epochs, args.batch_size, save_dir=args.model_dir, save_prefix=args.algo, dropout=args.dropout)
logger.info('====== Done with model training! ======')
print('====== Done with model training! ======')
def evaluate(args):
"""Evaluate test data"""
logger = logging.getLogger("QANet")
logger.info("====== evaluating ======")
logger.info('Load data_set and vocab...')
print('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, dataName+'OurVocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
assert len(args.dev_files) > 0, 'No dev files are provided.'
dataloader = DataLoader(args.max_p_num, args.max_p_len, args.max_q_len,
args.max_ch_len, args.train_files, args.dev_files)
logger.info('Converting text into ids...')
print('Converting text into ids...')
dataloader.convert_to_ids(vocab)
logger.info('Restoring the model...')
print('Restoring the model...')
model = Model(vocab, args)
model.restore(args.model_dir, args.algo)
logger.info('Evaluating the model on dev set...')
print('Evaluating the model on dev set...')
dev_batches = dataloader.next_batch('dev', args.batch_size, vocab.get_word_id(vocab.pad_token), vocab.get_char_id(vocab.pad_token), shuffle=False)
dev_loss, dev_bleu_rouge = model.evaluate(
dev_batches, result_dir=args.result_dir, result_prefix='dev.predicted')
logger.info('Loss on dev set: {}'.format(dev_loss))
logger.info('Result on dev set: {}'.format(dev_bleu_rouge))
logger.info('Predicted answers are saved to {}'.format(os.path.join(args.result_dir)))
def predict(args):
"""Predict answers"""
logger = logging.getLogger("QANet")
logger.info('Load data_set and vocab...')
print('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, dataName+'OurVocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
assert len(args.test_files) > 0, 'No test files are provided.'
dataloader = DataLoader(args.max_p_num, args.max_p_len, args.max_q_len, args.max_ch_len,
test_files=args.test_files)
logger.info('Converting text into ids...')
print('Converting text into ids...')
dataloader.convert_to_ids(vocab)
logger.info('Restoring the model...')
print('Restoring the model...')
model = Model(vocab, args)
model.restore(args.model_dir, args.algo)
logger.info('Predicting answers for test set...')
print('Predicting answers for test set...')
test_batches = dataloader.next_batch('test', args.batch_size, vocab.get_word_id(vocab.pad_token), vocab.get_char_id(vocab.pad_token), shuffle=False)
model.evaluate(test_batches,result_dir=args.result_dir, result_prefix='test.predicted')
def run():
args = parse_args()
logger = logging.getLogger("QANet")
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Running with args : {}'.format(args))
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.prepare:
prepare(args)
if args.train:
train(args)
if args.evaluate:
evaluate(args)
if args.predict:
predict(args)
if __name__ == '__main__':
run()