diff --git a/Venus_all_band donwnload data.from Google Earth Engine.py b/Venus_all_band donwnload data.from Google Earth Engine.py new file mode 100644 index 0000000..5812929 --- /dev/null +++ b/Venus_all_band donwnload data.from Google Earth Engine.py @@ -0,0 +1,127 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Tue Oct 1 15:16:23 2019 + +@author: yaron +""" + +import ee +import os +from ipygee import * + +import pandas as pd +from openpyxl import load_workbook +from datetime import datetime +ee.Initialize() + + + + + + + +feature_to_use ='users/yaron1205/Mizam_Israeli_Wheat_Adaptation_to_Climate_Change/LR2019_GEE' +#feature_to_use ='users/yaron1205/Mizam_Israeli_Wheat_Adaptation_to_Climate_Change/PW2019_genus' + +#fid_st of +id_colum_to_use = 'st_fid' +#id_colum_to_use = 'cv' +path_to_xls = 'D:/F.xlsx' +Scale = 0.001 + + +name_of_columns = { + 'b1': 'VE1', + 'b2': 'VE2', + 'b3': 'VE3', + 'b4': 'VE4', + 'b5': 'VE5', + 'b6': 'VE6', + 'b7': 'VE7', + 'b8': 'VE8', + 'b9': 'VE9', + 'b10': 'VE10', + 'b11': 'VE11', + 'b12': 'VE12', + 'b15': 'CloudMask', + } + + + + + +def Scale_function(x): + x= x*Scale + return x + + +feature = ee.FeatureCollection(feature_to_use) +fc_temp = feature.getInfo() +fc_info =fc_temp['features'] + + + +list_of_vale_to_loop =[] +# Using for loop + +for i in fc_info: + + print(i['properties'][id_colum_to_use]) + + list_of_vale_to_loop.append(i['properties'][id_colum_to_use]) + + +# start the work +list_of_sheet =[] +list_of_sheet_name =[] +for vale in list_of_vale_to_loop: + print (vale) + FC = (ee.FeatureCollection(feature_to_use).filter(ee.Filter().eq(id_colum_to_use, vale))) + print(FC) + col = ee.ImageCollection('users/venusdataw10/VEw10').filterBounds(feature) + time_series = col.filterDate('2018-07-11', '2019-05-31') + bands = ['b1', 'b2', 'b3','b4', 'b5', 'b6','b7', 'b8', 'b9','b10', 'b11', 'b12','b15'] + chart_ts = chart.Image.series(**{ + 'imageCollection': time_series, + 'region': FC, + 'scale': 5, + 'bands': bands, + 'reducer': ee.Reducer.mean()}) + print(chart_ts.dataframe) + + dataframe = chart_ts.dataframe.apply(Scale_function, axis=1) + + + + + #chart_ts.dataframe['DATE'] = chart_ts.dataframe.index + #chart_ts.dataframe = chart_ts.dataframe.reindex(columns=['DATE','B1', 'B2', 'B3','B4', 'B5', 'B6','B7', 'B8', 'B8A','B9', 'B10', 'B11','B12']) + list_of_sheet.append(dataframe) + list_of_sheet_name.append(vale) + + +# save the data +for sheet_data, sheet in zip(list_of_sheet, list_of_sheet_name): + print(sheet_data, sheet) + + sheet_data['DATE'] = sheet_data.index + sheet_data = sheet_data.reindex(columns=['DATE','b1', 'b2', 'b3','b4', 'b5', 'b6','b7', 'b8', 'b9','b10', 'b11', 'b12','b15']) + sheet_data['b15'] = sheet_data['b15'].apply(lambda x: x* 1000) #cloud mask info + sheet_data = sheet_data.rename(name_of_columns, axis='columns') + sheet_data['DATE'] = sheet_data['DATE'].apply(lambda x: x.strftime("%d/%m/%Y")) + writer = pd.ExcelWriter(path_to_xls, engine='openpyxl') + book = load_workbook(path_to_xls) + writer.book = book + writer.sheets = dict((ws.title, ws) for ws in book.worksheets) + + sheet_data.to_excel(writer, sheet_name=sheet, index=False ) + writer.save() + + +#columnsTitles = ['ID','Vb1', 'Vb2', 'Vb3','Vb4', 'Vb5', 'Vb6','Vb7', 'Vb8', 'Vb9','Vb10', 'Vb11', 'Vb12'] + + + +#df = df.reindex(columns=columnsTitles) + \ No newline at end of file