-
Notifications
You must be signed in to change notification settings - Fork 0
/
Paper S2_SR NDVI STD
556 lines (488 loc) · 17.1 KB
/
Paper S2_SR NDVI STD
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
// A UI to interactively filter a collection, select an individual image
// from the results, display it with a variety of visualizations, and export it.
////
var visParams = {"opacity":1,"bands":["elevation"],"min":0,"max":2300,"palette":["0000ff","008000","ffff00","ffa500","ff0000"]};
var dict = {
'STD-2': '990000',
'STD-1': 'ff0000',
'MEAN': '00ff00',
'STD+1': '0000ff',
'STD+2': '000099'
}
// The namespace for our application. All the state is kept in here.
var app = {};
var layerProperties = {
'Year of Loss': {
name: 'lossyear',
visParams: {min: 0, max: 1, palette: ['orange', 'orange', 'orange']},
legend: [
{'2016': 'red'}, {'...': 'orange'}, {'2000': 'yellow'},
{'No loss': 'black'}, {'Water or no data': 'grey'}
],
defaultVisibility: true
},
'Loss': {
name: 'loss',
visParams: {min: 0, max: 0, palette: ['red', 'red']},
legend:
[{'Loss': 'red'}, {'No loss': 'black'}, {'Water or no data': 'grey'}],
defaultVisibility: false
},
'Percent Tree Cover': {
name: 'treecover2000',
visParams: {min: 0, max: 100, palette: ['black', 'green']},
legend: [
{'75-100%': '#000000'}, {'50-75%': '#000000'}, {'25-50%': '#000000'},
{'0-25%': '#000000'}, {'Water or no data': '#000000'}
],
defaultVisibility: false
}
};
// variables -----------------------------------------------------------------------
var image_name = 'COPERNICUS/S2_SR/20201101T082111_20201101T082254_T36RXV';
var shp = 'users/djbonfil/Paperfield'; //shpfile_name
var column = 'field'; //name_of_the_field of the id of the Agricultural fields
//var anomaly = 0.025;
var negative_Buffer = -10; // negative Buffer(m)
//var mask_NDVI = 0.3;
//-----------------------------------------------------------------------------------
var fc_no_Buffer = ee.FeatureCollection(shp);
/** Creates the UI panels. */
app.createPanels = function() {
/* The introduction section. */
app.intro = {
panel: ui.Panel([
ui.Label({
value: 'anomaly Explorer',
style: {fontWeight: 'bold', fontSize: '26px', margin: '10px 5px'}
}),
])
};
/* The collection filter controls. */
app.filters = {
mapCenter: ui.Checkbox({label: 'Filter to map center', value: true}),
startDate: ui.Textbox('YYYY-MM-DD', '2018-11-01'),
endDate: ui.Textbox('YYYY-MM-DD', '2019-04-30'),
applyButton: ui.Button('Apply filters', app.applyFilters),
loadingLabel: ui.Label({
value: 'Loading...',
style: {stretch: 'vertical', color: 'gray', shown: false}
})
};
/* The panel for the filter control widgets. */
app.filters.panel = ui.Panel({
widgets: [
ui.Label('1) Select filters', {fontWeight: 'bold'}),
ui.Label('Start date', app.HELPER_TEXT_STYLE), app.filters.startDate,
ui.Label('End date', app.HELPER_TEXT_STYLE), app.filters.endDate,
app.filters.mapCenter,
ui.Panel([
app.filters.applyButton,
app.filters.loadingLabel
], ui.Panel.Layout.flow('horizontal'))
],
style: app.SECTION_STYLE
});
/* The image picker section. */
app.picker = {
// Create a select with a function that reacts to the "change" event.
select: ui.Select({
placeholder: 'Select an image ID',
onChange: app.refreshMapLayer
}),
// Create a button that centers the map on a given object.
centerButton: ui.Button('Center on map', function() {
Map.centerObject(Map.layers().get(0).get('eeObject'));
})
};
/* The panel for the picker section with corresponding widgets. */
app.picker.panel = ui.Panel({
widgets: [
ui.Label('2) Select an image', {fontWeight: 'bold'}),
ui.Panel([
app.picker.select,
app.picker.centerButton
], ui.Panel.Layout.flow('horizontal'))
],
style: app.SECTION_STYLE
});
/* The visualization section. */
app.vis = {
label: ui.Label(),
// Create a select with a function that reacts to the "change" event.
select: ui.Select({
items: Object.keys(app.VIS_OPTIONS),
onChange: function() {
// Update the label's value with the select's description.
var option = app.VIS_OPTIONS[app.vis.select.getValue()];
app.vis.label.setValue(option.description);
// Refresh the map layer.
app.refreshMapLayer();
}
})
};
/* The panel for the visualization section with corresponding widgets. */
app.vis.panel = ui.Panel({
widgets: [
ui.Label('3) Select a visualization', {fontWeight: 'bold'}),
app.vis.select,
app.vis.label
],
style: app.SECTION_STYLE
});
// Default the select to the first value.
app.vis.select.setValue(app.vis.select.items().get(0));
/* The export section. *///////////////////////////////////////////////////////////
app.export = {
button: ui.Button({
label: 'Export the current image to Drive',
// React to the button's click event.
onClick: function() {
// Select the full image id.
// var imageIdTrailer = app.picker.select.getValue();
// var imageId = app.COLLECTION_ID + '/' + imageIdTrailer;
// Get the visualization options.
// var visOption = app.VIS_OPTIONS[app.vis.select.getValue()];
// Export the image to Drive.
// Export.image.toDrive({
// image: ee.Image(imageId).select(visOption.visParams.bands),
//// description: 'L8_Export-' + imageIdTrailer,
}
})
};
/* The panel for the export section with corresponding widgets. */
app.export.panel = ui.Panel({
widgets: [
],
style: app.SECTION_STYLE
});
};
/** Creates the app helper functions. */
app.createHelpers = function() {
/**
* Enables or disables loading mode.
* @param {boolean} enabled Whether loading mode is enabled.
*/
app.setLoadingMode = function(enabled) {
// Set the loading label visibility to the enabled mode.
app.filters.loadingLabel.style().set('shown', enabled);
// Set each of the widgets to the given enabled mode.
var loadDependentWidgets = [
app.vis.select,
app.filters.startDate,
app.filters.endDate,
app.filters.applyButton,
app.filters.mapCenter,
app.picker.select,
app.picker.centerButton,
app.export.button
];
loadDependentWidgets.forEach(function(widget) {
widget.setDisabled(enabled);
});
};
/** Applies the selection filters currently selected in the UI. */
app.applyFilters = function() {
app.setLoadingMode(true);
var filtered = ee.ImageCollection(app.COLLECTION_ID);
// Filter bounds to the map if the checkbox is marked.
if (app.filters.mapCenter.getValue()) {
filtered = filtered.filterBounds(Map.getCenter());
}
// Set filter variables.
var start = app.filters.startDate.getValue();
if (start) start = ee.Date(start);
var end = app.filters.endDate.getValue();
if (end) end = ee.Date(end);
if (start) filtered = filtered.filterDate(start, end);
// Get the list of computed ids.
var computedIds = filtered
.limit(app.IMAGE_COUNT_LIMIT)
.reduceColumns(ee.Reducer.toList(), ['system:index'])
.get('list');
computedIds.evaluate(function(ids) {
// Update the image picker with the given list of ids.
app.setLoadingMode(false);
app.picker.select.items().reset(ids);
// Default the image picker to the first id.
app.picker.select.setValue(app.picker.select.items().get(0));
});
};
/** Refreshes the current map layer based on the UI widget states. */
app.refreshMapLayer = function() {
Map.clear();
var imageId = app.picker.select.getValue();
var image_name =imageId
print(image_name)
if (imageId) {
// If an image id is found, create an image.
var image = ee.Image(app.COLLECTION_ID + '/' + imageId);
print(image)
// Add the image to the map with the corresponding visualization options.
// var visOption = app.VIS_OPTIONS[app.vis.select.getValue()];
// var NDVI = s2ndvi(image)////////////
var colFunc_real = function(feat) {
var dis = feat.get(column);
var clipped = NDVI.clip(feat).set(column, dis);
return clipped;
};
// Function to make the Image Collection
var colFunc = function(feat) {
var dis = feat.get(column);
var clipped0 = NDVI.clip(feat).set(column, dis);
//get mean
var clipped_mean_for_mask = clipped0.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: feat.geometry(),
scale: 10,
maxPixels: 1e9
});
var clipped_std1_for_mask = clipped0.reduceRegion({
reducer: ee.Reducer.stdDev(),
geometry: feat.geometry(),
scale: 10,
maxPixels: 1e9
});
// MASK all std3 min
var clipped_mean00 = ee.Number(clipped_mean_for_mask.get("nd"));
var std1_vale_max_plus = ee.Number(clipped_std1_for_mask.get("nd"));
//get mean +std3 by std1+std1+std1
var std1_vale_max = clipped_mean00.add(std1_vale_max_plus);
var std2_vale_max_plus = std1_vale_max_plus.add(std1_vale_max_plus);
var std3_vale_max_plus = std1_vale_max_plus.add(std2_vale_max_plus);
//end of get mean +std3 by std1+std1+std1
var std3_vale_max_min_redy = clipped_mean00.subtract(std3_vale_max_plus);//make vale for mask from std3 min
var clipped_mask = clipped0.updateMask(clipped0.select('nd').gt(std3_vale_max_min_redy));//mask the vale
//END FOR MASK
var clipped_mean = clipped_mask.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: feat.geometry(),
scale: 10,
maxPixels: 1e9
});
var clipped_std1 = clipped_mask.reduceRegion({
reducer: ee.Reducer.stdDev(),
geometry: feat.geometry(),
scale: 10,
maxPixels: 1e9
});
//
//var delta = ee.Number(anomaly) ;
var mean_val = ee.Number(clipped_mean.get("nd"));
var std1_vale_max_plus0 = ee.Number(clipped_std1.get("nd"));
var std1_vale_max0 = mean_val.add(std1_vale_max_plus0);
var std2_vale_max_plus0 = std1_vale_max_plus0.add(std1_vale_max_plus0);
var std2_vale_max0 = mean_val.add(std2_vale_max_plus0);
//MIN STD
var std1_vale_min = mean_val.subtract(std1_vale_max_plus0);
var std2_vale_min = mean_val.subtract(std2_vale_max_plus0);
//to del
//var min1 = mean_val.subtract(std1_vale_max_plus);
//var del = mean_val.multiply(delta);
//var max1 = mean_val.add(del);
//var max2 = max1.add(del);
//var min2 = min1.subtract(del);
//
var image_after_Gt = clipped_mask.gt(std2_vale_min).add(clipped_mask.gt(std1_vale_min).add(clipped_mask.gt(std1_vale_max0)).add(clipped_mask.gt(std2_vale_max0)));
return image_after_Gt;
};
/////////////// TO IMAGECOLLECTION ////////////////////////
// Function to make the mask Image Collection of low vale
var colFunc_mask = function(feat) {
var dis = feat.get(column)
var clipped0 = NDVI.clip(feat).set(column, dis)
//get mean
var clipped_mean = clipped0.reduceRegion({
reducer: ee.Reducer.mean(),
geometry: feat.geometry(),
scale: 10,
maxPixels: 1e9
});
var clipped_std1 = clipped0.reduceRegion({
reducer: ee.Reducer.stdDev(),
geometry: feat.geometry(),
scale: 10,
maxPixels: 1e9
});
var clipped_mean00 = ee.Number(clipped_mean.get("nd"));
var std1_vale_max_plus = ee.Number(clipped_std1.get("nd"));
var std1_vale_max = clipped_mean00.add(std1_vale_max_plus);
var std2_vale_max_plus = std1_vale_max_plus.add(std1_vale_max_plus);
var std3_vale_max_plus = std1_vale_max_plus.add(std2_vale_max_plus);
//var std3_vale_max_plus_redy = clipped_mean00.add(std3_vale_max_plus);
var std3_vale_max_min_redy = clipped_mean00.subtract(std3_vale_max_plus);
// var std3_vale_min = ee.Number(clipped_std1.get("nd")).multiply(1);
var clipped = clipped0.updateMask(clipped0.select('nd').gt(std3_vale_max_min_redy));// it works now
//var clipped = clipped0.updateMask(clipped0.select('nd').lt(std3_vale_max_plus_redy));// it works now
return clipped.unmask(99)
}
//
var NDVI = image.normalizedDifference(['B8', 'B4']);
var fc_no_Buffer = ee.FeatureCollection(fc);
//Map.addLayer(NDVI.select('nd'));
//Map.addLayer(fc_no_Buffer);
// Map the Feature Collection to an Image Collection
var imcol_real = ee.ImageCollection(fc.map(colFunc_real));
var imcol = ee.ImageCollection(fc.map(colFunc));
var imcol_mask = ee.ImageCollection(fc.map(colFunc_mask));
var palette = ['990000', 'FF0000', '00FF00', '0000FF', '000099'];
var paletteBW = ['FFFFFF', 'EEEEEE', 'DDDDDD', 'CCCCCC', 'BBBBBB', 'AAAAAA', '999999', '888888',
'777777', '666666', '555555', '444444', '333333', '222222', '111111', '000000'];
var palett_emask = ["#0a0a0a","#0a0a0a"];
var mosaic_real = imcol_real.mosaic();
var mosaic = imcol.mosaic();
var imcol_mask0 = imcol_mask.mosaic();
// Map the Feature Collection to an Image Collection
// print(imcol_real)
Map.addLayer(imcol);
Map.addLayer(mosaic_real, paletteBW, 'NDVI_background');
Map.addLayer(imcol_mask0,palett_emask,'mask');
Map.addLayer(mosaic, {min: 0, max: 4, palette: palette}, 'split NDVI-auto anomaly');
var ref = ee.FeatureCollection('users/djbonfil/Papertre');
var empty = ee.Image().byte();
var outline = empty.paint({ featureCollection: ref, color: 1, width: 1});
Map.addLayer(outline, {palette: '000000'}, 'edges');
//Map.addLayer(fc, {color: '000000'},"shp");
}
};
};
/** Creates the app constants. */
app.createConstants = function() {
app.COLLECTION_ID = 'COPERNICUS/S2_SR';
app.SECTION_STYLE = {margin: '20px 0 0 0'};
app.IMAGE_COUNT_LIMIT = 100;
app.VIS_OPTIONS = {
'False color (B7/B6/B4)': {
description: 'Vegetation is shades of red, urban areas are ' +
'cyan blue, and soils are browns.',
visParams: {gamma: 1.3, min: 0, max: 0.3, bands: ['B7', 'B6', 'B4']}
},
'Natural color (B4/B3/B2)': {
description: 'Ground features appear in colors similar to their ' +
'appearance to the human visual system.',
visParams: {gamma: 1.3, min: 0, max: 0.3, bands: ['B4', 'B3', 'B2']}
},
'Atmospheric (B7/B6/B5)': {
description: 'Coast lines and shores are well-defined. ' +
'Vegetation appears blue.',
visParams: {gamma: 1.3, min: 0, max: 0.3, bands: ['B7', 'B6', 'B5']}
}
};
};
/** Creates the application interface. */
app.boot = function() {
app.createConstants();
app.createHelpers();
app.createPanels();
var main = ui.Panel({
widgets: [
app.intro.panel,
app.filters.panel,
app.picker.panel,
// app.vis.panel,
// app.export.panel
],
style: {width: '420px', padding: '11px'}
});
Map.setCenter(34.638,31.551 ,16);
ui.root.insert(0, main);
app.applyFilters();
};
//
//
// function of buffer and NDVI each feature.
var fc = fc_no_Buffer.map(function(f) {
return f.buffer(negative_Buffer);
});
//
//function s2ndvi(image){
// var ndvi = image.normalizedDifference(['B8', 'B4']);
// return image.addBands(ndvi);
//}
app.boot();
// Create main panel.
var panel = ui.Panel({
widgets: [
ui.Label({
value: 'legend',
style: {fontSize: '12px', color: '#ff0000'}
}),
ui.Label({
value: 'Class 2',
style: {fontSize: '12px', color: '#ffff00'}
}),
ui.Label({
value: 'Class 3',
style: {fontSize: '12px', color: '#ff00ff'}
}),
],
layout: ui.Panel.Layout.flow('vertical'),
style: {width: '400px'}
});
//Add a legend
var dict = {
'STD-2': '990000',
'STD-1': 'ff0000',
'MEAN': '00ff00',
'STD+1': '0000ff',
'STD+2': '000099'
}
// Create the panel for the legend items.
var legend = ui.Panel({
style: {
position: 'bottom-left',
padding: '8px 15px'
}
});
// Create and add the legend title.
var legendTitle = ui.Label({
value: 'legend',
style: {
fontWeight: 'bold',
fontSize: '18px',
margin: '0 0 4px 0',
padding: '0'
}
});
legend.add(legendTitle);
var loading = ui.Label('', {margin: '2px 0 4px 0'});
legend.add(loading);
// Creates and styles 1 row of the legend.
var makeRow = function(color, name) {
// Create the label that is actually the colored box.
var colorBox = ui.Label({
style: {
backgroundColor: '#' + color,
// Use padding to give the box height and width.
padding: '8px',
margin: '0 0 4px 0'
}
});
// Create the label filled with the description text.
var description = ui.Label({
value: name,
style: {margin: '0 0 4px 6px'}
});
return ui.Panel({
widgets: [colorBox, description],
layout: ui.Panel.Layout.Flow('horizontal')
});
};
var dict = {
'STD-2': '990000',
'STD-1': 'ff0000',
'MEAN': '00ff00',
'STD+1': '0000ff',
'STD+2': '000099'
}
var palette = ['990000','ff0000','00ff00','0000ff','000099']
var names = ['STD-2','STD-1','MEAN','STD+1','STD+2']
for (var i = 0; i < names.length; i++) {
legend.add(makeRow(palette[i], names[i]));
}
ui.root.add(legend);
/from here david/
var ref = ee.FeatureCollection('users/djbonfil/ref_poly_2020C');
var empty = ee.Image().byte();
var outline = empty.paint({ featureCollection: ref, color: 1, width: 1});
Map.addLayer(outline, {palette: '000000'}, 'edges');