-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_S2self.py
141 lines (112 loc) · 5.38 KB
/
train_S2self.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys
import torch
import argparse
import numpy as np
import os
import pdb
import logging
import math
import cv2
import scipy.misc as m
import torchvision.models as models
from torch.autograd import Variable
from torch.utils import data
from models import get_model
from utils.data_loader_S2self import DataLoader
from utils import util
import options.options as option
from torch.nn import DataParallel
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default='options/train/train_ESRCNN_S2self.json', help='Path to option JSON file.')
opt = option.parse(parser.parse_args().opt, is_train=True)
opt = option.dict_to_nonedict(opt)
if opt['path']['resume_state']:
resume_state = torch.load(opt['path']['resume_state'])
else:
resume_state = None
util.mkdir_and_rename(opt['path']['experiments_root'])
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root'
and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger(None, opt['path']['log'], 'train', level=logging.INFO, screen=True)
util.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO)
logger = logging.getLogger('base')
if resume_state:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(resume_state['epoch'], resume_state['iter']))
option.check_resume(opt)
logger.info(option.dict2str(opt))
if opt['use_tb_logger'] and 'debug' not in opt['name']:
from tensorboardX import SummaryWriter
tb_logger = SummaryWriter(log_dir='./tb_logger/' + opt['name'])
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
logger.info('Random seed: {}'.format(seed))
util.set_random_seed(seed)
torch.backends.cudnn.benckmark = True
# Setup TrainDataLoader
trainloader = DataLoader(opt['datasets']['train']['dataroot'], split='train')
train_size = int(math.ceil(len(trainloader) / opt['datasets']['train']['batch_size']))
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(trainloader), train_size))
total_iters = int(opt['train']['niter'])
total_epochs = int(math.ceil(total_iters / train_size))
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(total_epochs, total_iters))
TrainDataLoader = data.DataLoader(trainloader, batch_size=opt['datasets']['train']['batch_size'], num_workers=12, shuffle=True)
#Setup for validate
valloader = DataLoader(opt['datasets']['train']['dataroot'], split='val')
VALDataLoader = data.DataLoader(valloader,batch_size=opt['datasets']['train']['batch_size']//5, num_workers=1, shuffle=True)
logger.info('Number of val images:{:d}'.format(len(valloader)))
# Setup Model
model = get_model('esrcnn_s2self',opt)
if resume_state:
start_epoch = resume_state['epoch']
current_step = resume_state['iter']
model.resume_training(resume_state)
else:
current_step = 0
start_epoch = 0
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
for epoch in range(start_epoch, total_epochs):
for i, train_data in enumerate(TrainDataLoader):
current_step += 1
if current_step > total_iters:
break
model.update_learning_rate()
model.feed_data(train_data)
model.optimize_parameters(current_step)
if current_step % opt['logger']['print_freq'] == 0:
logs = model.get_current_log()
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}>'.format(
epoch, current_step, model.get_current_learning_rate())
for k,v in logs.items():
message += '{:s}: {:.4e} '.format(k, v[0])
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar(k, v[0], current_step)
logger.info(message)
if current_step % opt['train']['val_freq'] == 0:
avg_psnr = 0.0
idx = 0
for i_val, val_data in enumerate(VALDataLoader):
idx += 1
img_name = val_data[3][0].split('.')[0]
model.feed_data(val_data)
model.val()
visuals = model.get_current_visuals()
pred_img = util.tensor2img(visuals['Pred'])
gt_img = util.tensor2img(visuals['label'])
avg_psnr += util.calculate_psnr(pred_img, gt_img)
avg_psnr = avg_psnr / idx
logger.info('# Validation #PSNR: {:.4e}'.format(avg_psnr))
logger_val = logging.getLogger('val')
logger_val.info('<epoch:{:3d}, iter:{:8,d}> psnr:{:.4e}'.format(epoch, current_step, avg_psnr))
if opt['use_tb_logger'] and 'debug' not in opt['name']:
tb_logger.add_scalar('psnr', avg_psnr, current_step)
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
logger.info('Saving models and training states.')
model.save(current_step)
model.save_training_state(epoch, current_step)
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training')
if __name__ == '__main__':
main()