-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrid search random forrest
165 lines (146 loc) · 6.47 KB
/
grid search random forrest
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
regressor = RandomForestRegressor()
parameters = [{'n_estimators' : [150,200,250,300], 'max_features' : ['auto','sqrt','log2']}]
grid_search = GridSearchCV(estimator = regressor, param_grid = parameters)
grid_search = grid_search.fit(X_train, y_train)
best_parameters = grid_search.best_params_
best_accuracy = grid_search.best_score_
best_parameters
print("++++++++++++++++++++++")
best_accuracy
#---------------------------Random Search
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(random_state = 42)
from pprint import pprint
# Look at parameters used by our current forest
print('Parameters currently in use:\n')
pprint(rf.get_params())
Parameters currently in use:
{'bootstrap': True,
'criterion': 'mse',
'max_depth': None,
'max_features': 'auto',
'max_leaf_nodes': None,
'min_impurity_decrease': 0.0,
'min_impurity_split': None,
'min_samples_leaf': 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'n_estimators': 10,
'n_jobs': 1,
'oob_score': False,
'random_state': 42,
'verbose': 0,
'warm_start': False}
#-------------
from sklearn.model_selection import RandomizedSearchCV
# Number of trees in random forest
n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)]
# Number of features to consider at every split
max_features = ['auto', 'sqrt']
# Maximum number of levels in tree
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
max_depth.append(None)
# Minimum number of samples required to split a node
min_samples_split = [2, 5, 10]
# Minimum number of samples required at each leaf node
min_samples_leaf = [1, 2, 4]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
random_grid = {'n_estimators': n_estimators,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}
pprint(random_grid)
{'bootstrap': [True, False],
'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 4],
'min_samples_split': [2, 5, 10],
'n_estimators': [200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000]}
#----------------------
# Use the random grid to search for best hyperparameters
# First create the base model to tune
rf = RandomForestRegressor()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs = -1)
# Fit the random search model
rf_random.fit(train_features, train_labels)
rf_random.best_params_
{'bootstrap': True,
'max_depth': 70,
'max_features': 'auto',
'min_samples_leaf': 4,
'min_samples_split': 10,
'n_estimators': 400}
#--------------------------------
Evaluate Random Search
To determine if random search yielded a better model, we compare the base model with the best random search model.
def evaluate(model, test_features, test_labels):
predictions = model.predict(test_features)
errors = abs(predictions - test_labels)
mape = 100 * np.mean(errors / test_labels)
accuracy = 100 - mape
print('Model Performance')
print('Average Error: {:0.4f} degrees.'.format(np.mean(errors)))
print('Accuracy = {:0.2f}%.'.format(accuracy))
return accuracy
base_model = RandomForestRegressor(n_estimators = 10, random_state = 42)
base_model.fit(train_features, train_labels)
base_accuracy = evaluate(base_model, test_features, test_labels)
Model Performance
Average Error: 3.9199 degrees.
Accuracy = 93.36%.
best_random = rf_random.best_estimator_
random_accuracy = evaluate(best_random, test_features, test_labels)
Model Performance
Average Error: 3.7152 degrees.
Accuracy = 93.73%.
print('Improvement of {:0.2f}%.'.format( 100 * (random_accuracy - base_accuracy) / base_accuracy))
Improvement of 0.40%.
We achieved an unspectacular improvement in accuracy of 0.4%. Depending on the application though, this could be a significant benefit. We can further improve our results by using grid search to focus on the most promising hyperparameters ranges found in the random search.
Grid Search with Cross Validation
Random search allowed us to narrow down the range for each hyperparameter. Now that we know where to concentrate our search, we can explicitly specify every combination of settings to try. We do this with GridSearchCV, a method that, instead of sampling randomly from a distribution, evaluates all combinations we define. To use Grid Search, we make another grid based on the best values provided by random search:
from sklearn.model_selection import GridSearchCV
# Create the parameter grid based on the results of random search
param_grid = {
'bootstrap': [True],
'max_depth': [80, 90, 100, 110],
'max_features': [2, 3],
'min_samples_leaf': [3, 4, 5],
'min_samples_split': [8, 10, 12],
'n_estimators': [100, 200, 300, 1000]
}
# Create a based model
rf = RandomForestRegressor()
# Instantiate the grid search model
grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,
cv = 3, n_jobs = -1, verbose = 2)
This will try out 1 * 4 * 2 * 3 * 3 * 4 = 288 combinations of settings. We can fit the model, display the best hyperparameters, and evaluate performance:
# Fit the grid search to the data
grid_search.fit(train_features, train_labels)
grid_search.best_params_
{'bootstrap': True,
'max_depth': 80,
'max_features': 3,
'min_samples_leaf': 5,
'min_samples_split': 12,
'n_estimators': 100}
best_grid = grid_search.best_estimator_
grid_accuracy = evaluate(best_grid, test_features, test_labels)
Model Performance
Average Error: 3.6561 degrees.
Accuracy = 93.83%.
print('Improvement of {:0.2f}%.'.format( 100 * (grid_accuracy - base_accuracy) / base_accuracy))
Improvement of 0.50%.
It seems we have about maxed out performance, but we can give it one more try with a grid further refined from our previous results. The code is the same as before just with a different grid so I only present the results:
Model Performance
Average Error: 3.6602 degrees.
Accuracy = 93.82%.
Improvement of 0.49%.
A small decrease in performance indicates we have reached diminishing returns for hyperparameter tuning. We could continue, but the returns would be minimal at best.