From 6db882fc1740ecc752f773b6ef2905fc5d145e67 Mon Sep 17 00:00:00 2001 From: ycanerol Date: Fri, 19 May 2017 09:32:57 +0200 Subject: [PATCH] Implement automatic eigenvalue selection --- LNP_model | 2 +- plotLNP.py | 2 +- stc.py | 5 +++-- 3 files changed, 5 insertions(+), 4 deletions(-) diff --git a/LNP_model b/LNP_model index 1329d9c..6af26aa 100644 --- a/LNP_model +++ b/LNP_model @@ -12,7 +12,7 @@ from datetime import datetime execution_timer = datetime.now() -total_frames = 4000000 +total_frames = 10000000 dt = 0.01 # Time step t = np.arange(0, total_frames*dt, dt) # Time vector filter_time = .6 # The longest feature RGCs respond to is ~600ms diff --git a/plotLNP.py b/plotLNP.py index 3ee3f6a..6c174b5 100644 --- a/plotLNP.py +++ b/plotLNP.py @@ -15,7 +15,7 @@ rows = 2 columns = 1 -fig = plt.figure(figsize=(8, 8.5)) +fig = plt.figure(figsize=(8, 10)) plt.subplot(rows, columns, 1) plt.plot(filter_kernel1, alpha=.4) diff --git a/stc.py b/stc.py index 38070fa..9d9fe88 100644 --- a/stc.py +++ b/stc.py @@ -44,11 +44,12 @@ def stc(spikes, stimulus, filter_length, sta_temp): plt.xlabel('Eigenvalue index') plt.ylabel('Variance') -eigen_indices = [0, 1] +interesting_eigen_indices=np.where(np.abs(w-1)>.05)[0] +eigen_indices = [0, -1] eigen_legends = [] plt.subplot(1, 2, 2) -for i in eigen_indices: +for i in interesting_eigen_indices: plt.plot(v[:, i]) eigen_legends.append(str('Eigenvector '+str(i))) plt.plot(recovered_kernel,':')