-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathombtexturestas.py
126 lines (103 loc) · 4.62 KB
/
ombtexturestas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Calculate the STA using the texture stimulus for OMB
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import analysis_scripts as asc
import plotfuncs as plf
from omb import OMB
exp, ombstimnr = '20180710', 8
maxframes = 1000
contrast_window=100
def ombtexturesta(exp, ombstimnr, maxframes=10000,
contrast_window=100, plot=False):
"""
Calculates the spike-triggered average for the full texture for the OMB
stimulus. Based on the maximum intensity pixel of the STAs, calculates
the center of the receptive field and the contrast signal for this
pixel throughout the stimulus; to be used as input for models.
Parameters:
--------
exp:
The experiment name
ombstimulusnr:
Number of the OMB stimulus in the experiment
maxframes:
Maximum number of frames that will be used, typically the
array containing the contrast is very large and
it is easy to fill the RAM. Refer to OMB.generatecontrast()
documentation.
contrast_window:
Number of pixels to be used for the size of the texture.
Measured in each direction starting from the center so
a value of 100 will yield texture with size (201, 201, N)
where N is the total number of frames.
plot:
If True draws an interactive plot for browsing all STAs,
also marking the center pixels. Requires an interactive backend
"""
st = OMB(exp, ombstimnr, maxframes=maxframes)
st.clusterstats()
contrast = st.generatecontrast(st.texpars.noiselim/2,
window=contrast_window,
pad_length=st.filter_length-1)
contrast_avg = contrast.mean(axis=-1)
RW = asc.rolling_window(contrast, st.filter_length, preserve_dim=False)
all_spikes = np.zeros((st.nclusters, st.ntotal))
for i in range(st.nclusters):
all_spikes[i, :] = st.binnedspiketimes(i)
texturestas = np.einsum('abcd,ec->eabd', RW, all_spikes)
texturestas /= all_spikes.sum(axis=(-1))[:, np.newaxis,
np.newaxis, np.newaxis]
# Correct for the non-informative parts of the stimulus
texturestas = texturestas - contrast_avg[None, ..., None]
#%%
if plot:
fig_stas, _ = plf.multistabrowser(texturestas, cmap='Greys_r')
texture_maxi = np.zeros((st.nclusters, 2), dtype=int)
# Take the pixel with maximum intensity for contrast signal
for i in range(st.nclusters):
coords = np.unravel_index(np.argmax(np.abs(texturestas[i])),
texturestas[i].shape)[:-1]
texture_maxi[i, :] = coords
if plot:
ax = fig_stas.axes[i]
# Coordinates need to be inverted for display
ax.plot(*coords[::-1], 'r+', markersize=10, alpha=0.2)
#%%
contrast_signals = np.empty((st.nclusters, st.ntotal))
# Calculate the time course of the center(maximal pixel of texture STAs
stas_center = np.zeros((st.nclusters, st.filter_length))
for i in range(st.nclusters):
coords = texture_maxi[i, :]
# Calculate the contrast signal that can be used for GQM
# Cut the extra part at the beginning that was added by generatecontrast
contrast_signals[i, :] = contrast[coords[0], coords[1],
st.filter_length-1:]
stas_center[i] = texturestas[i, coords[0], coords[1], :]
stas_center_norm = asc.normalize(stas_center)
fig_contrast, axes = plt.subplots(*plf.numsubplots(st.nclusters), sharey=True)
for i, ax in enumerate(axes.ravel()):
if i < st.nclusters:
ax.plot(stas_center_norm[i, :])
savepath = os.path.join(st.exp_dir, 'data_analysis', st.stimname)
savefname = f'{st.stimnr}_texturesta'
if not maxframes:
maxframes = st.ntotal
savefname += f'_{maxframes}fr'
plt.ylim([np.nanmin(stas_center_norm), np.nanmax(stas_center_norm)])
fig_contrast.suptitle('Time course of center pixel of texture STAs')
fig_contrast.savefig(os.path.join(savepath, 'texturestas.svg'))
# Do not save the contrast signal because it is ~6GB for 20000 frames of recording
keystosave = ['texturestas', 'contrast_avg', 'stas_center',
'stas_center_norm', 'contrast_signals', 'texture_maxi',
'maxframes', 'contrast_window']
datadict = {}
for key in keystosave:
datadict[key] = locals()[key]
np.savez(os.path.join(savepath, savefname), **datadict)
if plot:
return fig_stas