Skip to content

Latest commit

 

History

History
33 lines (27 loc) · 1.52 KB

README.md

File metadata and controls

33 lines (27 loc) · 1.52 KB

Yolov5_Tensorflow

Fork from https://github.com/avBuffer/Yolov5_tf

训练

简单测试了下,使用yolov3 面的yymnist数据集

$ git clone https://github.com/YunYang1994/yymnist.git
$ python yymnist/make_data.py --images_num 1000 --images_path ./data/dataset/train --labels_txt ./data/dataset/yymnist_train.txt
$ python yymnist/make_data.py --images_num 200  --images_path ./data/dataset/test  --labels_txt ./data/dataset/yymnist_test.txt

针对avBuffer仓库的yolov5存在的问题做了部分修改,目前在yolov5s上测试通过,去除了Focus模块的slice op(为了移植,我在原版上面测试过,好像并没有掉点)

class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1):
        super(Focus, self).__init__()
        ##[[-1, 1, Focus, [64, 3]],  # 0-P1/2
        #self.conv = Conv(c1 * 4, c2, k, 1)
        self.conv = Conv(c1, c2, k, 2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        #re = self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
        re = self.conv(x)
        return re

测试时候训练开始正常收敛,根据选择loss不同,训练loss在第5-7个epoch会出现NA,修改ing

9.4更新

  • 1.修改了csp2结构,去除了部分bn
  • 2.关于训练:训练的yymnist数据集,loss 降低到50左右就无法降低了,目前正在用coco训练