-
Notifications
You must be signed in to change notification settings - Fork 4
/
test.py
130 lines (103 loc) · 5.22 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import os
import sys
import cv2
import numpy as np
import core.utils as utils
from PIL import Image
import tensorflow
if tensorflow.__version__.startswith('1.'):
import tensorflow as tf
else:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
if __name__ == '__main__':
"""
argv = sys.argv
if len(argv) < 5:
print('usage: python test.py gpu_id pb_file img_path_file out_path')
sys.exit()
"""
gpu_id = '0' #argv[1]
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
pb_file = 'ckpts/yolov3_test-loss=10.0817.ckpt-125.pb' #argv[2]
if not os.path.exists(pb_file):
print('pb_file=%s not exist' % pb_file)
sys.exit()
img_path_file = 'D:/datasets/MosEggs/src/Images' #argv[3]
if not os.path.exists(img_path_file):
print('img_path_file=%s not exist' % img_path_file)
sys.exit()
out_path = 'out' #argv[4]
if not os.path.exists(out_path):
os.makedirs(out_path)
print('test gpu_id=%s, pb_file=%s, img_file=%s, out_path=%s' % (gpu_id, pb_file, img_path_file, out_path))
num_classes = 1
input_size = 416
score_thresh = 0.3
iou_type = 'diou' #yolov4:diou, else giou
iou_thresh = 0.45
graph = tf.Graph()
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(graph=graph, config=config) as sess:
if os.path.isfile(img_path_file):
img = cv2.imread(img_path_file)
img_size = img.shape[:2]
image_data = utils.image_preporcess(np.copy(img), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
pred_sbbox, pred_mbbox, pred_lbbox = sess.run([return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)), np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, img_size, input_size, score_thresh)
bboxes = utils.nms(bboxes, iou_type, iou_thresh, method='nms')
if len(bboxes) > 0:
image = utils.draw_bbox(img, bboxes)
#image = Image.fromarray(image)
#image.show()
out_img = np.asarray(image)
score = bboxes[0][4]
file_path, file_name = os.path.split(img_path_file)
file, postfix = os.path.splitext(file_name)
out_file = os.path.join(out_path, file + '_%.6f' % (score) + postfix)
cv2.imwrite(out_file, out_img)
print('img_path_file=', img_path_file, 'out_file=', out_file)
elif os.path.isdir(img_path_file):
img_files = os.listdir(img_path_file)
for idx, img_file in enumerate(img_files):
in_img_file = os.path.join(img_path_file, img_file)
#print('idx=', idx, 'in_img_file=', in_img_file)
if not os.path.exists(in_img_file):
print('idx=', idx, 'in_img_file=', in_img_file, ' not exist')
continue
img = cv2.imread(in_img_file)
if img is None:
print('idx=', idx, 'in_img_file=', in_img_file, ' read error')
continue
img_size = img.shape[:2]
image_data = utils.image_preporcess(np.copy(img), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
pred_sbbox, pred_mbbox, pred_lbbox = sess.run([return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, img_size, input_size, score_thresh)
bboxes = utils.nms(bboxes, iou_type, iou_thresh, method='nms')
if len(bboxes) > 0:
image = utils.draw_bbox(img, bboxes)
#image = Image.fromarray(image)
#image.show()
out_img = np.asarray(image)
score = bboxes[0][4]
file_path, file_name = os.path.split(in_img_file)
file, postfix = os.path.splitext(file_name)
out_file = os.path.join(out_path, file + '_%.6f' % (score) + postfix)
cv2.imwrite(out_file, out_img)
print('idx=', idx, 'in_img_file=', in_img_file, 'out_file=', out_file)
else:
print('img_path_file=%s is error' % img_path_file)