We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好, 我最近两天也在使用tensorflow重新实现网络, 现在还没有完成, 刚看到你的代码, 有两点疑问:
`def focus(input_data, trainable, init_width_size): input_data = tf.concat([input_data[:, ::2, ::2, :], input_data[:, 1::2, ::2, :], input_data[:, ::2, 1::2, :], input_data[:, 1::2, 1::2, :]], 3) input_data = conv(input_data, (3, 3, 12, init_width_size), trainable=trainable, name='conv0', act_fun='mish') return input_data
`
感谢您的分享.
The text was updated successfully, but these errors were encountered:
1.你好,readme里面提到过,我去除了focus slice,直接用strides=2取代了 2.完全按照原版里面,没BN的话,训练在第二个epoch loss就为na了,所以我BN统一设置为True
Sorry, something went wrong.
No branches or pull requests
你好, 我最近两天也在使用tensorflow重新实现网络, 现在还没有完成, 刚看到你的代码, 有两点疑问:
`def focus(input_data, trainable, init_width_size):
input_data = tf.concat([input_data[:, ::2, ::2, :], input_data[:, 1::2, ::2, :],
input_data[:, ::2, 1::2, :], input_data[:, 1::2, 1::2, :]], 3)
input_data = conv(input_data, (3, 3, 12, init_width_size), trainable=trainable, name='conv0', act_fun='mish')
return input_data
`
感谢您的分享.
The text was updated successfully, but these errors were encountered: