- Awesome production machine learning
- Awesome-Mobile-Machine-Learning
- Awesome Quantum Machine Learning
- VSBE2020: OAQA 양자 머신러닝 알고리즘의 기반 - Hyun Byung Park (박현병), 양자오리 at KAITA - YouTube
- Awesome-Mobility-Machine-Learning-Contents
- applied-ml: 📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production
- Machine Learning Roadmap 2020 mindmap
- ml-roadmap
- ml-engineer-roadmap: WIP: Roadmap to becoming a machine learning engineer in 2020
- 머신러닝 엔지니어 커리어 로드맵. 송호연 - PyCon Korea 2021 - YouTube
- How to Become a Machine Learning Engineer in 2022? Step-by-Step
- Essential Guide to keep up with AI/ML/CV
- 머신러닝
- reddit.com/r/learnmachinelearning
- reddit.com/r/LearnMachineLearning/wiki/reference
- My Curated List of AI and Machine Learning Resources from Around the Web
- The 25 Best Data Science and Machine Learning GitHub Repositories from 2018
- 수학을 포기한 직업 프로그래머가 머신러닝 학습을 시작하기위한 학습법 소개
- 머신러닝 공부 순서, 방법 및 강의 정리
- 딥러닝 공부 가이드 (HW / SW 준비편)
- How to Get Hired as a Machine Learning Engineer
- AI, ML and Data Engineering InfoQ Trends Report - August 2021
- Machine Learning is Fun!
- The world’s easiest introduction to Machine Learning
- Part 2 Using Machine Learning to generate Super Mario Maker levels
- Part 3: Deep Learning and Convolutional Neural Networks
- Part 4: Modern Face Recognition with Deep Learning
- Part 5: Language Translation with Deep Learning and the Magic of Sequences
- Part 6: How to do Speech Recognition with Deep Learning
- Part 7: Abusing Generative Adversarial Networks to Make 8-bit Pixel Art
- Part 8: How to Intentionally Trick Neural Networks
- 기계 학습(Machine Learning, 머신 러닝)은 즐겁다!
- Part 1
- Part 2 기계 학습을 사용해서 Super Mario Maker의 레벨 제작하기
- Part 3 딥러닝(Deep Learning)과 컨볼루션 신경망(Convolutional Neural Network 또는 CNN)
- Part 4 딥러닝(Deep Learning)을 사용한 최신 얼굴 인식(Face Recognition)
- Part 5 딥러닝(Deep Learning)과 시퀀스(Sequence)의 마법을 사용한 언어 번역(Language Translation)
- Part 6 딥러닝(Deep Learning)을 이용한 음성 인식(Speech Recognition)
- Part 7 생성적 적대 신경망(Generative Adversarial Networks)을 활용해 8비트 픽셀 아트(Pixel Art) 만들기
- Part 8 신경망을 의도적으로 속이는 방법
- 머신러닝의 소개 (ML Zero to Hero 1부)
- Introduction to Machine Learning
- Visual Intro to Machine Learning and Deep Learning
- 'Machine Learning' 카테고리의 글 목록
- An annotated path to start with Machine Learning
- How to get started with Machine Learning in about 10 minutes
- 통계 & 기계학습 기본 개념
- 기계학습에서 사용되는 수학 공식
- 머신러닝 속 수학
- Probability Distribution 기계학습을 위한 수학
- How do I learn mathematics for machine learning?
- An end to end implementation of a Machine Learning pipeline
- How to Code Neat Machine Learning Pipelines
- 머신 러닝 파이프라인 | Pega Devlog
- 머신러닝 강의 모음
- 머신러닝, 제대로 배우는 법
- 정규강의 : 기계 학습
- 기계학습 여름캠프
- 기계학습 (Machine Learning) 입문하기
- 알파고? 정말쉬운 머신러닝 기초개념
- 기본적인 머신러닝과 딥러닝 강좌
- 2016 여름 머신러닝 워크샵 1일차 강의 (KAIST 오혜연 교수님)
- Machine Learning 스터디 (1) Machine Learning이란?
- The Data Fabric for Machine Learning. Part 1. | by Favio Vázquez | Towards Data Science
- The Data Fabric for Machine Learning. Part 1-b: Deep Learning on Graphs. | by Favio Vázquez | Towards Data Science
- The Data Fabric for Machine Learning. Part 2: Building a Knowledge-Graph. | by Favio Vázquez | Towards Data Science
- 기계 학습 기초
- 통계 학습이란
- 기본적인 머신러닝과 딥러닝 강의
- 인공지능을 위한 머신러닝 알고리즘
- 기계학습의 발전 동향, 산업화 사례 및 활성화 정책 방향 – 딥러닝 기술을 중심으로
- 세상에 있는 (거의) 모든 머신러닝 문제 공략법
- Machine Learning - A New Programming Paradigm
- Traditional Programming versus Machine Learning, in One Picture
- software.intel.com/en-us/ai-academy/students/kits
- Machine learning by sogood
- 스탠포드 Cousera
- class.coursera.org/ml-003/lecture
- Stanford Machine Learning
- repository for programming assignments of Machine Learning course, which is taught by Prof. Andrew Ng
- Machine Learning Foundations : Regression ( 1. 이론)
- Machine Learning Foundations 강의 노트 : Regression ( 2. 실습)
- Machine Learning Foundations 강의 노트 : Classification ( 1. 이론)
- Coursera Machine Learning으로 기계학습 배우기
- 기계 학습 이론 및 그 응용에 대한 소개: 예제를 포함한 시각적인 학습서
- Machine Learning Crash Course
- Machine Learning From Scratch
- My Journey into Machine Learning
- Week 1 머신러닝? 선형 회귀, 비용함수는 뭐고 경사하강법은 무엇인가요?
- Week 2 다변량 선형회귀와 효과적인 경사하강법을 위한 방법들
- Week 3 로지스틱 회귀와 결정 경계, 그리고 오버피팅을 막기 위한 정칙화
- Week 4 신경망이란?
- Week 5 순전파와 역전파, 그리고 신경망 학습 프로세스
- Week 6 머신러닝 알고리즘을 효율적으로 다루기 위한 몇 가지 팁
- Data Science and Machine Learning with Python
- Machine Learning for Product Managers Part I — Problem Mapping
- Classifiers 간단 정리 ( Single, Hybrid, Ensemble)
- Gradient Boosting from scratch
- Bagging; 서로 연관성이 없거나 사전지식이 없는 predictor들 여럿을 섞어서 결과를 내는 것. 제일 유명한 것이 random forest
- Gradient boosting(GBM); 이전 predictor가 이후 predictor에 영향을 미치거나 관계를 알고 그 연쇄를 이용하면 보다 효율적인 결정을 할 수 있음
- 각각 오버피팅과 variance/bias balance와 관련해 장단점이 있어서 도메인에 맞게 잘 선택하는 것이 중요
- Awesome Gradient Boosting Research Papers
- How to use GradientBoosting Classifier and Regressor in Python
- 친절한 그래디언트 부스팅A Gentle Introduction to Gradient Boosting | Metamath
- Noisy Gradient 다루기 | MakinaRocks Tech Blog
- Machine Learning Algorithms In Layman’s Terms, Part 1
- Google Developers Machine Learning Recipes with Josh Gordon
- Hello World - Machine Learning Recipes #1
- Visualizing a Decision Tree - Machine Learning Recipes #2
- What Makes a Good Feature? - Machine Learning Recipes #3
- Let’s Write a Pipeline - Machine Learning Recipes #4
- Writing Our First Classifier - Machine Learning Recipes #5
- Train an Image Classifier with TensorFlow for Poets - Machine Learning Recipes #6
- Classifying Handwritten Digits with TF.Learn - Machine Learning Recipes #7
- Google Tutorial on Machine Learning
- Making Friends with ML Tutorial
- Mahcine Learning 101
- 엑셀의 분석도구를 이용한 간단한 선형 회귀분석 실습
- 머신러닝의 기초 - 선형 회귀 한 번에 제대로 이해하기 (30분만 투자해봐요!)
- My playlist – Top YouTube Videos on Machine Learning, Neural Network & Deep Learning
- 손고리즘ML
- 기계학습/머신러닝 기초(Machine Learning Basics)
- Setup Ubuntu 16.04 for ML Research
- Intro to Machine Learning
- A Tour of Machine Learning Algorithms
- A Tour of Machine Learning Algorithms
- machine learning a brief breakdown
- Essentials of Machine Learning Algorithms (with Python and R Codes)
- A Tour of The Top 10 Algorithms for Machine Learning Newbies
- 10 Machine Learning Algorithms You Should Know in 2018
- Ten Machine Learning Algorithms You Should Know to Become a Data Scientist
- TOP 10 Machine Learning Algorithms
- 101 Machine Learning Algorithms for Data Science with Cheat Sheets
- Do you know how to choose the right machine learning algorithm among 7 different types?(KR)
- Top 9 Algorithms for a Machine Learning Beginner
- 11 Most Common Machine Learning Algorithms Explained in a Nutshell | by Soner Yıldırım | Towards Data Science
- 10 Best Machine Learning Algorithms (2022) - Unite.AI
- Machine Learning Resources for Beginners and Beginners++
- Simple ML explanations by MIT PhD students (ML-Tidbits)
- Machine Learning Tutorials
- 7 Free Machine Learning Courses
- A Visual Introduction to Machine Learning
- GitHub Special: Data Scientists to Follow & Best Tutorials on GitHub
- Machine Learning Tutorial Videos | Simplilearn
- 머피의 머신러닝 : Gaussian Processes
- 머피의 머신러닝 13 Sparse Linear Model
- Data-Analysis-and-Machine-Learning-Projects/example-data-science-notebook/Example Machine Learning Notebook.ipynb
- The Current State of Machine Intelligence
- deepdive.stanford.edu
- MACHINES human conversation about machine learning
- A First Encounter with Machine Learning
- 코넬 대학 강의
- Oxford Machine Learning 2014-2015
- 머신 러닝에 대해서 잘 정리해놓은 자료
- Understanding Machine Learning: From Theory to Algorithms
- Machine Learning & Computer Vision Talks
- deepcumen.com
- 오픈소스 matlab Octave
- Octave 기본 사용법
- 로보틱스와 머신 러닝/인공지능 무료 교재 추천 15권
- e커머스 위한 기계학습 기술, 오픈소스로 공개
- 베이지안 네트워크
- The State of Probabilistic Programming
- Deep Learning vs Probabilistic Graphical Models vs Logic
- Probabilistic machine learning and artificial intelligence
- Introduction To Probabilistic Modeling and Machine Learning
- pml-book | “Probabilistic Machine Learning” - a book series by Kevin Murphy
- 머신러닝(Machine Learning)과 확률(Probability)
- github.com/nyu-dl/Intro_to_ML_Lecture_Note
- Machine Learning Done Wrong
- UFLDL Tutorial
- Deep Learning Tutorials
- Machine learning basics
- How does a beginner best spend one week of learning machine learning?
- Machine Learning Done Wrong
- Emojineering Part 1: Machine Learning for Emoji Trends
- Great Innovative Idea- Machine Teaching
- 나는 머쉰이다
- 조지아테크 머쉰러닝
- bcho.tistory.com/category/빅데이타/머신러닝
- Machine Learning Wars: Amazon vs Google vs BigML vs PredicSis
- Machine Learning with Knowledge Graphs
- Machine-Learning Algorithm Calculates Fair Distance for a Race Between Usain Bolt and Long-Distance Runner Mo Farah
- Some Studies in Machine Learning Using the Game of Checkers
- How to Evaluate Machine Learning Models, Part 4: Hyperparameter Tuning
- How to Build a Machine Learning Model | by Chanin Nantasenamat | Jul, 2020 | Towards Data Science
- A Global Optimization Algorithm Worth Using
- Global minimum을 찾기 위한 Hyperparmeter를 정하는 방법 5가지의 C++ library, python api
- Guess and Check, Grid Search, Random Search, Bayesian Optimization, Local Optimization With a Good Initial Guess
- Hyper-parameters in Action! Part I — Activation Functions
- Importance of Choosing the Correct Hyper-parameters While Defining a Model
- 내가 만든 모델이 잘 작동하는건가?
- High Performance Machine Learning through Codesign and Rooflining
- CHALLENGES TO MACHINE LEARNING: Relations between reality and appearance
- colah's blog
- ScalaML
- MarI/O - Machine Learning for Video Games
- Information Theoretic Metrics for Multi-Class Predictor Evaluation
- 기계학습, 딥러닝, 그리고 모션분석
- 의사결정트리
- 의사결정RL 의사결정심리 + 강화학습 + 파이썬웹 + 온라인액션
- How do machines learn meaning?
- Algorithmic Trading of Futures via Machine Learning
- 데이터는 모든 것을 알고 있다
- 알고리즘 사회와 노동의 미래 (전체 요약)
- 알고리즘 사회, 새로운 사회계약이 필요하다 (강정수 발제 전문)
- 로봇, 인공지능 그리고 노동의 미래 (엄태웅 발제 전문)
- 알고리즘 사회와 노동의 미래 (패널 토론)
- Machines learn to play Tabla
- Machine Learning: The High-Interest Credit Card of Technical Debt
- Curse of Dimensionality
- Machine Learning
- Machine Learning: Zero to Hero
- An Introduction to Distributed Machine Learning
- Common Design for Distributed Machine Learning
- Why a Mathematician, Statistician, & Machine Learner Solve the Same Problem Differently
- The Mathematics of Machine Learning
- Hogwild
- Machine Learning and Cognitive Computing
- Cross-validation for detecting and preventing overfitting
- 18. 모델의 과최적화를 피하는 방법 (overfitting, regularization)
- L2 Regularization
- Train/Test Split and Cross Validation in Python
- The Secret behind Train and Test Split in Machine Learning Process - Data Science Central
- Sergey Feldman: You Should Probably Be Doing Nested Cross-Validation | PyData Miami 2019
- 크로스 밸리데이션(cross validation, 교차 검증)의 개념, 의미 - 로스카츠의 AI 머신러닝
- 딥러닝 필수 파이썬 지식: 이미지 파일 확장자 검증
- More-flexible machine learning
- What to do with “small” data?
- 머신러닝 특집
- Weak Learning, Boosting, and the AdaBoost algorithm
- What is the difference between Bagging and Boosting?
- 군중은 똑똑하다2 — AdaBoost
- How to use AdaBoost Classifier and Regressor in Python
- Clearing air around “Boosting” Understanding the current go-to algorithm for best results
- 머신 러닝의 기본적인 이해 : 뇌와의 비교
- IBM ‘왓슨’, 인지컴퓨팅 서비스로 업그레이드
- Machine Learning for indentify the author of an email
- 집단지성 프로그래밍 1(Machine Learning, Euclidean Distance, Pearson Correlation Coefficient)
- 연애에서 결혼까지 (기계학습에서 딥러닝까지) OneQ
- The Three Cultures of Machine Learning
- github.com/ml-ko/ml
- Learning with Maximum Likelihood
- (ML 4.1) Maximum Likelihood Estimation (MLE) (part 1)
- 분포를 왜 추정하는걸까? MLE vs MAP - 분포를 추정해서 손글씨를 만들어보자(1)
- Is Maximum Likelihood Useful for Representation Learning?
- Minimizing the Negative Log-Likelihood, in Korean
- topdata.news
- www.rightrelevance.com
- SigOpt for ML: Unsupervised Learning with Even Less Supervision Using Bayesian Optimization
- A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning
- Machine Learning - Bayesian Learning
- NDC 2016 김정주 - 기계학습을 활용한 게임 어뷰징 검출
- Spring XD: The Foundation for Real-time Streaming and Machine Learning Systems
- 로보어드바이져를 개발하면서 알게 된 것들 1 – 알고리즘에 대한 환상
- Principal Components Regression, Pt.1: The Standard Method
- Machine Learning - Authors and titles for recent submissions
- Stock inference engine using Spring XD, Apache Geode / GemFire and Spark ML Lib. http://pivotal-open-source-hub.github.io/StockInference-Spark
- github.com/showcases/machine-learning
- 머신 러닝
- 머신러닝 Class
- Machine Learning Tutorial
- Logistic Regression Tutorial
- Logistic regression
- Logistic Regression
- Solving Logistic Regression with Newton's Method
- Deployment of Web App + ML Model + APIs — Tutorial - Learn how to deploy a web app served by a Logistic Regression Model. We will create an app to predict the probability of a Data Scientist earn more than USD 100k per year
- Putting Machine Learning Models into Production
- Building A Logistic Regression in Python, Step by Step
- Logistic Regression — Detailed Overview
- Logistic Regression from scratch - Philipp Muens
- 머신러닝 - 로지스틱 리그레션(Logistic Regression) - YouTube
- 로지스틱회귀 Logistic Regression - 시그모이드 함수
- Multiclass Regression Tutorial
- 5 Types of Regression and their properties
- Simple and Multiple Linear Regression in Python
- Simple Linear Regression Tutorial for Machine Learning (ML) | by Towards AI Team | Towards AI | Medium
- Drawing the Multiple Regression Models
- multi-linear-regression
- Multiple Regression Analysis in Python | Part 1 데이터 로딩 및 클리닝. 모델의 일반적인 개념
- Multiple Regression Analysis in Python | Part 2 모델의 가정, 다중공선성 확인. Variance Inflation factor 다중공선성 확인 & 제거
- Multiple Regression Analysis in Python | Part 3 이상점 확인, 다중 회귀 분석 모델에 미치는 영향
- Multiple Regression Analysis in Python | Part 4 모델 진단 및 모델 가정 검증
- Multiple Regression Analysis in Python | Part 5 모델 구축 및 활용
- Linear Regression — Python Implementation
- How to Build a Linear Regression Model in Python
- Proof of the F Test for Linear Regression
- ML From Scratch, Part 1: Linear Regression
- 선형회귀 Linear Regression - 최소제곱법, 평균제곱오차, 경사하강법
- 6 TYPES OF REGRESSIONS, DID YOU KNOW?
- Python, Machine Learning, and Language Wars
- AI, Deep Learning, and Machine Learning: A Primer
- 만약 타이타닉에 내가 탔더라면 생존할 수 있었을까?
- Approaching (Almost) Any Machine Learning Problem | Abhishek Thakur
- Generate Rap Lyrics - Fresh Machine Learning #4
- Approaching (Almost) Any Machine Learning Problem
- 정보 이론: Information Theory 1편
- 정보 이론 2편: KL-Divergence
- 가장 쉬운 KL Divergence 완전정복!
- 초보를 위한 정보이론 안내서 - Entropy란 무엇일까
- 초보를 위한 정보이론 안내서 - Cross Entropy 파헤쳐보기
- 초보를 위한 정보이론 안내서 - KL divergence 쉽게 보기
- 딥러닝의 미래와 인간수준 기계학습
- 기계학습(Machine learning) 입문하기 강의
- 휴먼 러닝 #1 : 보고 나면 더 궁금해지는 머신 러닝 학습 노트
- Machine Learning on FPGAs
- Binarized CNN on FPGA
- Introduction to Local Interpretable Model-Agnostic Explanations (LIME)
- Machine Learning is Fun!
- Machine Learning is Fun! The world’s easiest introduction to Machine Learning
- 기계 학습(Machine Learning)은 즐겁다! Part 1
- Machine Learning is Fun! Part 2 RNN 설명
- 기계 학습(Machine Learning)은 즐겁다! Part 2
- Machine Learning is Fun! Part 3: Deep Learning and Convolutional Neural Networks CNN을 이용한 이미지 분류
- 기계 학습(Machine Learning)은 즐겁다! Part 3
- Machine Learning is Fun! Part 4: Modern Face Recognition with Deep Learning 얼굴 인식
- 기계 학습(Machine Learning)은 즐겁다! Part 4
- Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences
- Machine Learning is Fun Part 6: How to do Speech Recognition with Deep Learning
- Machine Learning Datasets For Data Scientists
- The 50 Best Public Datasets for Machine Learning
- Handling imbalanced datasets in machine learning
- Visualising Machine Learning Datasets with Google’s FACETS
- Machine learning with sparse, high-dimensional and large datasets
- Datasets for machine learning
- Dataset Splitting Best Practices in Python - KDnuggets
- MACHINE-LEARNING ALGORITHM GENERATES VIDEOS FROM STILLS
- 기계학습(Machine Learning) 101
- Lisbon Machine Learning Summer School Highlights
- 예측 모형에서의 클래스 불균형(class imbalance) 문제
- Dealing with Imbalanced Classes in Machine Learning
- 머신 러닝 프레임웍에 대한 간단 정리
- 맨땅에 해딩 머신러닝 #1-기본 개념 잡기
- 맨땅에 해딩 머신러닝 #2 - 선형 회귀 모델 (1)
- 50+ Data Science and Machine Learning Cheat Sheets
- machine-learning-cheat-sheet: Classical equations and diagrams in machine learning
- Cheat Sheet of Machine Learning and Python (and Math) Cheat Sheets
- reddit.com/r/MachineLearning
- 해커에게 전해들은 머신러닝
- Machine Learning: A Complete and Detailed Overview
- The 10 main takeaways from MLconf SF
- 한국어 머신러닝, 딥러닝, 텐서플로 강의 링크
- Machine learning algorithms - Minimal and clean examples of machine learning algorithms
- All Machine Learning Algorithms Explained | Data Science | Machine Learning | Python
- New Machine Learning Cheat Sheet by Emily Barry
- Top-down learning path: Machine Learning for Software Engineers
- 4 Reasons Your Machine Learning Model is Wrong (and How to Fix It)
- 7 Powerful Programming Languages For Doing Machine Learning
- Ai 그까이꺼
- Difference between Machine Learning, Data Science, AI, Deep Learning, and Statistics
- Introduction to Semi-Supervised Learning with Ladder Networks
- 기계학습 / 딥러닝이란 무엇인가
- Hierarchical Temporal Memory HTM
- Explaining Basics of Machine Learning, Algorithms and Applications
- 13 Free Training Courses on Machine Learning and Artificial Intelligence
- 140 Machine Learning Formulas
- 140 Machine Learning Formulas
- 기계 학습의 현재와 미래
- Foundations of Machine Learning Boot Camp
- FOUNDATIONS OF MACHINE LEARNING
- What is Machine Learning?
- 6 Fun Machine Learning Projects for Beginners
- 11 Machine Learning Project Ideas for Beginners
- Machine Learning Summarized in One Picture
- THE MATHEMATICS OF MACHINE LEARNING
- Torch DQN 강화학습 소개
- rwa - Machine Learning on Sequential Data Using a Recurrent Weighted Average
- Amnon Shashua 교수; MobileEye 창업자
- Introduction to Machine Learning: Class Notes 67577 머신러닝 개론 강의(2009년)의 강의교안
- A Computer Vision System on a Chip: a case study from the automotive domain
- Inductive Bias and Depth Efficiency of Convolutional Networks
- On Representation Theory in Computer Vision Problems
- Multilinear Systems and Invariant Theory in the Context of Computer Vision and Graphics CS329
- Is the brain a good model for machine intelligence?
- SimNets: A Generalization of Convolutional Networks
- On the Expressive Power of Deep Learning: A Tensor Analysis
- Machine Learning 스터디 (10) PAC Learning & Statistical Learning Theory
- TUPAQ - Automating Model Search for Large Scale Machine Learning
- A Super Harsh Guide to Machine Learning
- distill.pub
- 기계학습 overview
- Applied Machine Learning Process
- Approaching (Almost) Any Machine Learning Problem
- 한국어 기계 학습 강좌
- The 10 Algorithms Machine Learning Engineers Need to Know
- Understand these 5 basic concepts to sound like a machine learning expert
- A Peek at Trends in Machine Learning
- Machine learning overview (infographic)
- Machine learning methods (infographic)
- Machine learning evolution (infographic)
- INFOGRAPHIC: A BEGINNER’S GUIDE TO MACHINE LEARNING ALGORITHMS
- 머신러닝 모델 개발 삽질 경험기
- Machine Learning Pipeline
- 패스트캠퍼스 머신러닝 시험 강의 원고 - 이기준
- Is there any GUI based Machine Learning tool that does not require any coding and easy to use?
- Machine Learning, AI and Big Data Tools Open-Sourced By Major Corporations
- Top 10 machine learning frameworks
- 자동화된 머신러닝 - 데이터과학자의 생산성을 높여주는 패러다임 @ Airbnb
- 10 steps to bootstrap your machine learning project (part 2)
- github.com/psygrammer/SlowML
- 머신러닝 모델링 알고리즘
- 초짜 대학원생의 입장에서 이해하는 The Marginal Value of Adaptive Gradient Methods in Machine Learning (2)
- Machine - June 2017 Preview Machine Learning IDE
- 음성/음악신호+머신러닝 초심자를 위한 가이드
- 개발자가 AI를 더 쉽게 빌드하고 배포할 수 있도록 Google Cloud AI가 확장해나가고 있습니다
- Embrace Randomness in Machine Learning
- RuleFit - 정확성과 설명성을 모두 만족하는 모델
- Scaling Machine Learning as a Service
- 머신 러닝에서 알고리즘 공부를 말할 때 내가 하고 싶은 이야기
- 도서 카테고리 예측하기 프로젝트 #3 생성된 모델로 텍스트 데이터 카테고리 예측해보기
- A Practical Guide to Tree Based Learning Algorithms
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
- Randy Olson's data analysis and machine learning projects
- Machine Learning Demo Session
- 머신러닝과 전통적 통계학의 차이
- 머신러닝 관련 통계 추론 체크리스트
- Machine Learning Mindmap / Cheatsheet
- Machine Learning Cheatsheet
- Essential Cheat Sheets for Machine Learning and Deep Learning Engineers
- Cheat Sheets for Machine Learning and Data Science
- 누구나 쉽게 할 수 있는 빅데이타와 머신러닝
- Introducing: Unity Machine Learning Agents
- Behind the Magic: How we built the ARKit Sudoku Solver
- developers.google.com/machine-learning/glossary
- How to unit test machine learning code
- 심상진: Genetic Programming을 이용한 Machine Learning 모델 만들기
- Expressivity, Trainability, and Generalization in Machine Learning
- State-of-the-art result for all Machine Learning Problems
- Deep Learning Multi Host & Multi GPU Architecture 고찰 및 구성 1 - with tensorflow, cntk, keras, horovod, Azure Batch AI
- Mybridge for Professionals
- github.com/Mybridge/learn-machine-learning
- Top Machine Learning Open Source from August 2019
- Machine Learning Top 10 Articles for the Past Month (v.July 2019)
- Machine Learning Open Source of the Month (v.June 2019)
- Machine Learning Top 10 Articles for the Past Month (v.June 2019)
- Machine Learning Open Source for the Past Month (v.May 2019)
- Machine Learning Top 10 Articles for the Past Month (v.May 2019)
- Amazing Machine Learning Open Source of the Year (v.2019)
- Learn Machine Learning from Top 50 Articles for the Past Year (v.2019)
- Machine Learning Open Source of the Month (v.Dec 2018)
- Machine Learning Top 10 Articles for the Past Month (v.Dec 2018)
- Machine Learning Open Source of the Month (v.Nov 2018)
- Machine Learning Top 10 Articles for the Past Month (v.Nov 2018)
- Machine Learning Top 10 Articles for the Past Month (v.Sep 2018)
- Machine Learning Top 10 Articles for the Past Month (v.Aug 2018)
- Machine Learning Top 10 Articles for the Past Month (v.July 2018)
- Machine Learning Open Source Projects of the Month (v.June 2018)
- Machine Learning Open Source of the Month (v.May 2018)
- Machine Learning Top 10 Articles for the Past Month (v.May 2018)
- Machine Learning Open Source of the Month (v.Apr 2018)
- Machine Learning Top 10 Articles for the Past Month (v.Apr 2018)
- Machine Learning Top 10 Open Source Projects (v.Feb 2018)
- Machine Learning Top 10 Articles for the Past Month (v.Feb 2018)
- 30 Amazing Machine Learning Projects for the Past Year (v.2018)
- Learn to Build a Machine Learning Application from Top Articles of 2017
- Machine Learning Top 10 Articles for the Past Month (v.Nov 2017)
- Machine Learning Top 10 Articles For the Past Month (v.Oct 2017)
- Machine Learning Top 10 Articles For the Past Month (v.Sep 2017)
- Machine Learning Top 10 Articles for the Past Month (v.May 2017)
- Machine Learning Top 10 Articles For the Past Month (v.Sep 2017)
- Machine Learning Top 10 Articles for the Past Year (v.2017)
- Machine Learning Top 10 Articles for the Past Month
- Machine Learning Top 10 Articles For The Past Month
- Machine Learning Top 10 Articles for the Past Month
- 빅데이터, 머신러닝, 그리고 AI
- Building Supervised Models for User Verification
- Part 1 of the Tutorial Introduction to the data set and validation
- 행동 패턴의 쌍이 같은 사용자로부터 온 것인지를 결정하기 위한 4개의 지도학습 모델을 개발
-
- XGBoost 2) MLP neural network 3) simple siamese neural network 4) siamese recurrent neural network
- Part 2 of the Tutorial Neural-network-based models + assessment on test set
- 신경망 기반 모델에 중점을 두고 테스트 세트에서 네 가지 모델의 성능을 살펴봄
- Part 1 of the Tutorial Introduction to the data set and validation
- High Performance Machine Learning with Kubernetes, Istio, and GPUs - San Francisco and Seattle Kubernetes Meetups
- Data Science - Operationalize ML
- Machine Learning Tip : Using Rotational Data
- Google Tips and Tricks 2022 - For Machine Learning, Data Science, And Coding Practitioners
- Preparing your data for Machine Learning marking, filtering, feature extraction
- 작정하고 쓰는 머신러닝 강의 비판 (1)
- 작정하고 쓰는 머신러닝 강의 비판 (2)
- 작정하고 쓰는 머신러닝 강의 수강생 비판 (feat. 꼰대)
- Interpretable Machine Learning with XGBoost
- 기계학습 모델은 통계적 모델에 비해 예측력은 높으나 설명력이 떨어진다는 비판
- 이 글은 XGBoost의 예측 결과를 설명하기 위해 기존의 설명 방식과 더불어 새로운 방식도 제안
- Save Lives With 10 Lines of Code: Detecting Parkinson’s with XGBoost
- XGBoost Algorithm: Long May She Reign!
- Multi-Class classification with Sci-kit learn & XGBoost: A case study using Brainwave data
- Fine-tuning XGBoost in Python like a boss
- XGBoost 알고리즘의 개념 이해
- Configure XGBoost Models with YAML
- Getting hyped about automated hyperparameter tuning xgboost
- Intro to XGBoost Models (decision-tree-based ensemble ML algorithms) - YouTube
- XGBoost 개념 정리 - 멈춤보단 천천히라도
- Facebook’s Field Guide to Machine Learning video series
- 머신러닝 하루 만에 배우려고 하지 마라
- DeepTide - The world's first massive collaboration machine learning platform Collaborate with top AI researchers on the biggest problems
- Beyond Apps: A Developer’s Guide to Getting Started in Machine Learning
- Convex Optimization 컨벡스 최적화
- Convex Optimization: Fall 2018
- 머신러닝 단기집중과정 - 텐서플로우 API 사용 Google의 실용적인 머신러닝 속성 입문 과정
- Machine Learning for source code analysis - Alexander Bezzubov - FOSSASIA Summit 2017
- 3D Machine Learning
- 머신러닝 무엇이 중요한가(데이타야놀자)
- Cracking the Machine Learning Interview
- Machine Learning: how to go from Zero to Hero
- Machine Learning for Drummers
- How to deliver on Machine Learning projects A guide to the ML Engineering Loop
- Analyzing verbatim comments in spreadsheets using machine learning
- Using machine learning to index text from billions of images
- Training machine learning models online for free(GPU, TPU enabled)!!!
- Understanding softmax and the negative log-likelihood NLL
- Logit, Sigmoid, 그리고 SoftMax의 관계 알기
- 아파트 시세, 어쩌다 머신러닝까지
- 쏘카에서 머신러닝 인재를 채용하는 이유 (feat. 타다)
- 사회인의 휴학, Gap Year 이야기
An Introduction to Causal Inference with Gaussian Processes, Part I- Gaussian Processes, not quite for dummies
- 머신러닝 관점에서 가우시안 프로세스의 소개 (최성준 박사님)
- 가우시안 혼합 모델(Gaussian mixture model) 기초 개념
- Applied Machine Learning: Part 1
- Engineering Systems for Real-Time Predictions @DoorDash
- Predictive Modeling in a Video Advertising Marketplace - Olga Bane | PyData Global 2021 - YouTube
- Hands-on Machine Learning Model Interpretation
- Neil Lawrence's Talks
- (My) Machine Learning Workflow
- Interpretable Machine Learning
- Interpretable Machine Learning 개요: (1) 머신러닝 모델에 대한 해석력 확보를 위한 방법
- Interpretable Machine Learning 개요: (2) 이미지 인식 문제에서의 딥러닝 모델의 주요 해석 방법
- machine learning
- 10 Best Machine Learning YouTube Videos
- Runway ML - Machine learning for creators
- 온라인서점고객세분화: 리비젼 전용준 머신러닝 190731
- 패턴 찾기·노이즈 추적에 효과적인 비지도 학습 알아보기
- AI 연구원, 머신러닝이 연금술에 불과하다고 역설
- Beginner Guide : Missing Data Handling imputation 결측 값 missing data 을 다루는 여러가지 방법
- A Gentle Introduction to Uncertainty in Machine Learning
- 머신러닝으로 콘서트 티켓 판매량 예측하기(1) 콘서트 비즈니스에서 예측의 역할 — MyMusicTaste
- 머신러닝으로 콘서트 티켓 판매량 예측하기(2) 모델링, 첫 삽을 뜨기까지— MyMusicTaste
- 머신러닝으로 콘서트 티켓 판매량 예측하기(3) 첫 번째 모델, Paul의 탄생 — MyMusicTaste
- 머신러닝으로 콘서트 티켓 판매량 예측하기(4) 모델 개선 프로세스와 지표— MyMusicTaste
- 막돼먹은 엔지니어의 머신러닝 개발기
- 1. 선형회귀(Linear Regression)
- 2. 로지스틱 회귀 (Logistic Regression)
- 3. 뉴럴 네트워크 (Neural Network)
- 4. 뉴럴 네트워크 (NN) - MNIST()
- 5. Convolutional Neural Network (CNN)
- 6. 잠재 인수 모델 (Latent Factor Model)
- 7. Recurrent Neural Network (RNN)
- 8. Long Short-Term Memory (LSTM)
- 9. Monte Carlo Learning
- 10. SARSA Learning
- 11. Q-Learning
- 12. Q 네트워크 (Q-Networks)
- 13. Policy Gradient (PG)
- Naïve Bayes for Machine Learning – From Zero to Hero
- Rules of Machine Learning: Best Practices for ML Engineering 정리
- Rules of Machine Learning: | ML Universal Guides | Google Developers
- The First Rule of Machine Learning: Start without Machine Learning
- Simulation vs. Machine Learning
- 라쏘? 로지스틱? 회의에서 당당하게, 수식없이 기초개념부터 lasso logistic
- The Illustrated FixMatch for Semi-Supervised Learning
- Why we do machine learning engineering with YAML, not notebooks
- What to Do When You Can't Trust Your Labels? - Ramiro Caro | PyData Global 2021 - YouTube
- machine-learning-experiments: Interactive Machine Learning experiments: models training + models demo
- Learning Machine Learning | Cloud AI | Google Cloud
- Learning Neural Networks | Cloud AI | Google Cloud
- Is Machine Learning the Right Tool?
- Building Machine Learning infra
- Principal Component Analysis (PCA) with Python Examples — Tutorial | by Towards AI Team | Towards AI | Nov, 2020 | Medium
- Principal Component Analysis explained visually PCA
- pca.ipynb - Colaboratory
- 통계 고유값과 고유벡터를 이용한 주성분 분석(PCA) - 차원축소
- PCA를 이용하여 이미지 압축(Pillow)
- 5 Reasons You Should Never Use PCA For Feature Selection
- 조대협의 블로그 :: 머신러닝 파이프라인에서 데이터 전처리 방법 일반적인 이야기 + GCP 이야기
- Introducing Machine Learning for Developers Newsletter (ML4Devs, Issue 1) - Machine Learning for Developers
- Machine Learning vs. Traditional Software Development (ML4Devs, Issue 2) - Machine Learning for Developers
- A Proof of the Convergence of Gradient Descent – Beomsu Kim – Paper Reviews and Math Posts
- 9 Distance Measures in Data Science | Towards Data Science
- 200+ Machine Learning Projects Solved and Explained | by Aman Kharwal | Coders Camp | Feb, 2021 | Medium
- Cannes: How ML saves us $1.7M a year on document previews - Dropbox
- 머신러닝 모델링의 흔한 실수들 | Pega Devlog
- 머신러닝 모델링의 흔한 실수들 (2) | Pega Devlog
- 머신러닝 모델링의 흔한 실수들 60+ 사례 중 데이터 관련 사례
- 지루하지 않게 코노미 사진 4만장 어노테이션하기 (머신러닝과 함께) | by Doyoung Gwak | 네이버 플레이스 개발 블로그 | Medium
- 머신러닝 프로젝트를 '레벨 업'시킬 수 있는 8가지 방법 - CIO Korea
- ‘휴먼 인 더 루프’(HITL) 머신러닝이란? - CIO Korea
- LINE 메신저 앱에 온 디바이스 머신 러닝 적용하기 - LINE ENGINEERING
- Sai Ma - MIY: Model It Yourself - with ML Legobricks - YouTube
- Pydata Berlin April 2021: How to detect silent failures in ML models - YouTube
- 원티드는 어떻게 AI로 채용 결과를 예측하고 매칭할까? | by 황리건 Reagan Hwang | 원티드 제품 팀블로그 | May, 2021 | Medium
- Comparing ML as a Service (MLaaS): Amazon AWS, IBM Watson, MS Azure | AltexSoft
- Using Machine Learning to Predict Value of Homes On Airbnb | by Robert Chang | Airbnb Engineering & Data Science | Medium 에어비엔비에서의 가격 예측
- Using Machine Learning to Improve Streaming Quality at Netflix | by Netflix Technology Blog | Netflix TechBlog 넷플릭스에서 스트리밍 퀄리티 실시간 개선
- How we grew from 0 to 4 million women on our fashion app, with a vertical machine learning approach | by Gabriel Aldamiz... | HackerNoon.com | Medium 패션 앱에서 소비자 경험 개선
- Tuning Model Performance | Uber Engineering Blog
- 9 Deadly Sins of Dataset Selection in ML | by Sandeep Uttamchandani | Jun, 2021 | Towards Data Science
- Real Estate pricing with Machine Learning & non-traditional data sources | Tryolabs Blog
- Bootstrapping Labels via
___
Supervision & Human-In-The-Loop active learning - 머신러닝과 정보이론: 작동원리의 이해 – 과학의 지평
- 실험없이 이벤트 효과를 추정할 수 있을까? - DIFFERENCE IN DIFFERENCES
- Spotify의 오디오 분석을 사용한 일렉트로닉 댄스 음악의 장르 분류
- Cracking Random Number Generators using Machine Learning – Part 1: xorshift128 – NCC Group Research
- A Tour of End-to-End Machine Learning Platforms | Ian Hellström
- 머신러닝 모델로 동네생활 신고 업무 자동화하기. 2021년에 동네생활 글을 필터링(신고)하는 새로운 모델을 개발하고… | by Jaeyoon Chun(Aio) | 당근마켓 팀블로그 | Jan, 2022 | Medium
- Why 90 percent of all machine learning models never make it into production | by Ari Joury | Towards Data Science
- 이진 분류를 위한 머신러닝 예측 성능 비교 - 로지스틱 회귀, 랜덤포레스트, 부스팅, 신경망
- 구글 리서치(제프 딘)의 미래 ML 테마들 | GeekNews
- The First Rule of Machine Learning: Start without Machine Learning
- Robust Foundation for Data Pipelines at Scale - Lessons from Netflix - YouTube
- Agile Data Science - How to Implement Agile Workflows For Analytics and Machine Learning - YouTube
- 머신러닝, 딥러닝 대체 뭘 공부하라는거야?
- Machine Learning is Still Too Hard for Software Engineers – Nyckel – Add custom machine learning to your application in minutes
- Two Types of Information Leakage In ML Systems
- Real-time machine learning: challenges and solutions
- PolyCoder is an open source AI code-generator that researchers claim trumps Codex | VentureBeat
- How to Improve Any ML/DL Performance by 10% Easily | by Gurami Keretchashvili | Apr, 2022 | Towards Data Science
- 멘토특강 클라우드 Big Data & Machine Learning 기초 - YouTube
- Evolution of ML Fact Store. by Vivek Kaushal | by Netflix Technology Blog | Apr, 2022 | Netflix TechBlog
- Fraud Detection Using Random Forest, Neural Autoencoder, and Isolation Forest Techniques
- Amazon Machine Learning
- 아마존 웹 서비스를 다루는 기술
- Experimenting with AWS Machine Learning for Classification
- 데이터에 숨은 통찰력을 발견하라
- mlstudy2019 2019년 머신러닝 스터디 모임
- Develop and sell a Machine Learning app — from start to end tutorial | by Daniel Deutsch | Sep, 2020 | Towards Data Science
- Io17ex automl & autodraw
- Introducing AdaNet: Fast and Flexible AutoML with Learning Guarantees
- AdaNet 소개: 학습 보장을 이용한 빠르고 유연한 AutoML
- An Opinionated Introduction to AutoML and Neural Architecture Search
- AutoML Automatic Machine Learning Challenge & Lessons
- AutoML
- How to Beat Google’s AutoML - Hyperparameter Optimisation with Flair
- automl-gs Provide an input CSV and a target field to predict, generate a model + code to run it
- 이미지 분류 모델 AutoML 파이프라인. 이미지 분류 모델 AutoML 활용하기 | by Yoo Gyoungyoon | 당근마켓 팀블로그 | Dec, 2020 | Medium
- Auto ML in Python — An Overview of the MLBox Package | by Ahmed Besbes | Apr, 2022 | Towards Data Science
- Continuous-Adaptation-with-VertexAI-AutoML-Pipeline
- evalml: EvalML is an AutoML library written in python
- mindsdb - Open Source AutoML for Developers
- 패턴 인식 - 오일석
- 머신러닝에서 딥러닝까지
- Machine Learning 강의노트
- 머신러닝/딥러닝 실전 입문
- 모두를 위한 컨벡스 최적화
- 더북(TheBook): 머신 러닝 워크북 4~8장만
- 더북(TheBook): 머신 러닝을 다루는 기술 with 파이썬, 사이킷런 1~5장만
- 더북(TheBook): 머신 러닝을 위한 수학 with 파이썬, R
- 더북(TheBook): 머신 러닝 교과서 with 파이썬, 사이킷런, 텐서플로 1~4장만
- Deep Learning
- Model-Based Machine Learning
- Machine Learning: a Probabilistic Perspective
- Machine Learning with TensorFlow
- 'Machine Learning Yearning' 책의 한국어 번역
- Math for Machine Learning
- CS229T/STAT231: Statistical Learning Theory (Winter 2015)
- 5 EBooks to Read Before Getting into A Machine Learning Career
- 12 Best Free Ebooks for Machine Learning
- 16 Free Machine Learning Books
- 10 Free Machine Learning books
- 10 Free Must-Read Books for Machine Learning and Data Science
- List of Free Must-Read Books for Machine Learning
- List of Free Must-Read Machine Learning Books
- List of Free Must-Read Machine Learning Books
- Subsets of Machine Learning Cookbook
- 50 external machine learning / data science resources and articles
- The "Python Machine Learning" book code repository and info resource
- Machine Learning by Abdelhamid Mellouk and Abdennacer Chebira
- Mathematics for Machine Learning
- A Beginner Mathematics Book For Machine Learning
- Model-Based Machine Learning
- PRML(Pattern Recognition & Machien Learning, Bishop) 정리
- Python
- Python Data Science Handbook github
- Python Machine Learning book code repository
- Open Content for self-directed learning in data science
- machine_learning - a collection of IPython notebooks detailing various machine learning algorithims
- Meetup-Fall-2013 - Slides, code, and other information relating to the Fall 2013 Meetups
- Practical Machine Learning with Python
- Understanding machine learning from theory to algorithms
- Interpretable Machine Learning - A Guide for Making Black Box Models Explainable
- iml: Interpretable Machine Learning r package
- A high-bias, low-variance introduction to Machine Learning for physicists
- 자료 모음 1
- 자료 모음 2
- Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
- 24 Best (and Free) Books To Understand Machine Learning
- 9 Best Machine Learning & Artificial Intelligence Books To Read In 2020
- Free Book: A Comprehensive Guide to Machine Learning (Berkeley University) - Data Science Central
- Machine Learning Engineering book by Andriy Burkov
- 존헐 교수 머신러닝 인 비지니스
- 책 & 강의 직접 보고 추천하는 머신러닝 & 딥러닝 & 관련 수학 총.정.리.
- Best Machine Learning Books — Free and Paid — Editorial Recommendations | Towards AI
- Machine Learning classifier comparison
- Choosing a Machine Learning Classifier
- Online Category-learning and Classification
- Naive Bayes classification 알고리즘에 대한 하호진님의 글
- bench-ml - Simple/limited/incomplete benchmark for scalability/speed and accuracy of machine learning libraries for classification
- Free Code Friday - Better and Faster Machine Learning Classifiers in Python
- Solving A Simple Classification Problem with Python — Fruits Lovers’ Edition
- Types of classification algorithms in Machine Learning
- ML Practicum: Image Classification
- Music Genre Classification with Python A Guide to analysing Audio/Music signals in Python
- Machine Learning Classifier evaluation using ROC and CAP Curves sklearn
- 머신러닝을 활용한 제품 카테고리 분류하기
- Smarter Ways to Encode Categorical Data for Machine Learning
- Classification & Clustering 모델 평가
- Python Voting Classifiers 다수결 분류의 정의와 구현
- Machine Learning - four layer 1000 neuron bidiectional lstm classifier - YouTube
- dirty_cat: machine learning on dirty categories — Dirty cat
- Lime: Explaining the predictions of any machine learning classifier
- Clustering Based Unsupervised Learning
- Three Popular Clustering Methods and When to Use Each
- Assessment Metrics for Clustering Algorithms
- Fantastic drivers and how to find them
- Grouping Soccer Players with Similar Skillsets in FIFA 20 | Part 2: Hierarchical Clustering - YouTube
- DBSCAN (밀도 기반 클러스터링)
- 밀도기반 클러스터링 - DBSCAN
- Understanding DBSCAN Algorithm and Implementation from Scratch
- Finding Topics in Harry Potter using K-Means Clustering
- k-means++ Silhouettes
- Density-Based Clustering
- Machine Learning 스터디 (13) Clustering (K-means, Gaussian Mixture Model)
- K-means 알고리즘 구현하기
- Hands-On with Unsupervised Learning
- Understanding K-means Clustering in Machine Learning
- Introduction to K-Means Clustering | Pinecone
- RFMT Segmentation Using K-Means Clustering
- 10 Clustering Algorithms With Python
- K-Means Python script to Flask application (step by step) - YouTube
- OpenFace - This is a Python and Torch implementation of the CVPR 2015 paper FaceNet: A Unified Embedding for Face Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin at Google using publicly available libraries and datasets
- Lablup Conf 1st - YouTube
- O'reilly Strata Data Conference New York 2019 후기
- Deploying ML in an Old-fashioned Heavy Industry - Robert Meyer | PyData Global 2021 - YouTube
- Machine Learning for Developer Self-Care • Erik Meijer • GOTO 2021 - YouTube
- 머신러닝 괜찮은 강의들 리스트 1
- 머신러닝 딥러닝 바로가기
- 인공지능과 기계학습
- (인공지능, 기계학습, 머신러닝) KOOC 인공지능및기계학습개론 문일철교수님
- 하버드, 스탠포드, AI 온라인 강의 쏟아진다
- (기계학습,인공지능,머신러닝) 한국어 기계 학습 강좌 심화 1
- 머신러닝(기계학습) 이해하기 scikit-learn
- 아빠가 들려주는 머신 러닝
- 포브스가 추천하는 AIㆍML 무료 강좌 '베스트 9'
- 머신러닝1 - 생활코딩
- 동영상 강좌 파이썬 데이터과학, 머신러닝∙딥러닝
- Every single Machine Learning course on the internet, ranked by your reviews
- Machine Learning Video Library
- A List Of Top 10 Free Machine Learning Online Courses and Tutorials
- 10 Best Online Courses for Machine Learning with Python-Bestseller 2021
- 20 Best Online Courses On Machine Learning You Must Know in 2021
- 60 Best Free Online Courses for Machine Learning & AI in 2021
- 8 Best Machine Learning Courses for Finance You Must Know- 2021
- 12 Best Online Courses for Machine Learning with Python-Bestseller 2022
- 45 Udacity FREE Courses on Machine Learning and Data Science- 2022
- Machine Learning Summer School 2017 Tübingen
- Best Coursera Free Courses Machine Learning for Everyone in 2022
- Top Python Libraries for Data Science, Data Visualization & Machine Learning - KDnuggets
- Be Future Ready | Day - 1 | AI And Machine Learning Full Course | AI & ML Tutorial | Simplilearn - YouTube
- Andrew Ng / Coursera
- Machine Learning Exercises In Python, Part 1 python exercises of Andrew Ng's maching learning class on Coursera
- Python programming assignments for Machine Learning by Prof. Andrew Ng in Coursera
- Python Implementation of Andrew Ng’s Machine Learning Course
- Machine Learning 정리
- Best Coursera Free Courses Machine Learning for Everyone in 2021
- Learning from Data - Yaser S. Abu-MostafaYaser S. Abu-Mostafa Machine Learning course - recorded at a live broadcast from Caltech
- CS7641 at Georgia Tech / Udacity
- CS156 at Caltech
- CS3244 Machine Learning Tutorial Material in python
- CS 329S | Syllabus
- sentdex, Machine Learning with Python
- Deep Learning TV
- Demis Hassabis, CEO, DeepMind Technologies - The Theory of Everything
- Accelerating Understanding: Deep Learning, Intelligent Applications, and GPUs
- Sirajology
- Two+ Minute papers
- geoffrey hinton
- Machine Learning Engineer Nanodegree by google
- Learn Machine learning online – List of machine learning courses available online
- PhD level ML Course
- Course on Information Theory, Pattern Recognition, and Neural Networks
- machinelearningmastery.com/start-here
- What are Some ‘Advanced ‘ AI and Machine Learning Online Courses?
- Top 5 Machine Learning Courses for 2019
- A practical approach to machine learning
- 10 Free Top Notch Machine Learning Courses
- Emil’s Story as a Self-Taught AI Researcher
- 머신러닝/딥러닝 공부 첫걸음 :: 시작은 미약한 프로그래밍
- Learn Machine Learning: - machinelearning.to
- Machine learning course: the overfitting-underfitting tradeoff in a model that generalizes - YouTube
- Machine Learning Full Course | Learn Machine Learning | Machine Learning Tutorial | Simplilearn - YouTube
- Machine Learning Fundamentals - YouTube
- Machine Learning University - YouTube
- ML-For-Beginners: 12 weeks, 24 lessons, classic Machine Learning for all
- (ML Lecture 01) Regression Case Study
- ML-YouTube-Courses: A repository to index and organize the latest machine learning courses found on YouTube
- Best Machine Learning Courses for Finance You Must Know in 2021
- Best Resources to Learn Machine Learning Online in 2021
- 6 Best Websites to learn Data Science and Machine Learning in 2022 | by javinpaul | Javarevisited | Feb, 2022 | Medium
- 10 Best Advanced Machine Learning Courses You Must Know in 2022
- learning-machine: A handbook for ML built on answers
- scikit-learn MOOC
- Understanding Feature Engineering
- (Part 1) — Continuous Numeric Data Strategies for working with continuous, numerical data
- (Part 2) — Categorical Data Strategies for working with discrete, categorical data
- (Part 3) — Traditional Methods for Text Data Traditional strategies for taming unstructured, textual data
- (Part 4) — Deep Learning Methods for Text Data Newer, advanced strategies for taming unstructured, textual data
- feature engineering text data
- Automated Feature Engineering in Python
- Fundamental Techniques of Feature Engineering for Machine Learning
- 피처 엔지니어링 #1 - 피처 크로스
- Automated Feature Engineering for Predictive Modeling
- Machine Learning의 Feature Store란?
- Feature Store - why?
- Feature store - 핵심 개념
- Feature store - Basic Architecture
- Feature Crossing
- Feature Selection Technical Report
- What is Dim Reduction & Feature Selection
- [A Feature Selection Tool for Machine Learning in Python](A Feature Selection Tool for Machine Learning in Python)
- Effective Data Preprocessing and Feature Engineering
- Data Feast — A Highly Scalable Feature Store at Dream11 | by Dream11 Engineering | Feb, 2022 | Dream11 Engineering
- feast - Feature Store for Machine Learning
- feathr: Feathr – An Enterprise-Grade, High Performance Feature Store
- ICML 2015 and Machine Learning Research at Google
- Two big challenges in machine learning
- A Real World Use Case of Google Machine Learning APIs - Hyperconnect
- 구글의 머신러닝 비전: TPU부터 모바일까지 (Google I/O Extended Seoul 2017)
- 구글 머신러닝 스터디잼 가이드라인 Qwik Lab
- 구글 클라우드 스터디잼 (심화) 가이드라인
- Learn from your data Make real-time predictions Online machine learning system. Build learning models and predict future values
- Build a Prediction Engine Using Spark, Kudu, and Impala
- An Incomplete list of Market-Prediction Projects in Andrew Ng's CS229 Course
- cloud.google.com/prediction
- Java Machine Learning Library
- SystemML
- Weka 3 - Data Mining with Open Source Machine Learning Software in Java
- Kaggle: Your Home for Data Science
- A simple model for Kaggle Bike Sharing
- KaggleBreak/problems
- Part 1: For Beginners - Bag of Words 캐글뽀개기 6월 이상열
- KAGGLE ENSEMBLING GUIDE
- My Kaggle Learning Curve: Artificial Stupidity
- Bag of Words Meet Bags of Popcorn - (1) Part 1: Bag of Words
- DRIVENDATA Competitions
- Kaggle Solution: What’s Cooking ? (Text Mining Competition)
- 스터디 뽀개기 2015년
- 캐글즐기기 (2017년 새시작)
- Winning Tips on Machine Learning Competitions by Kazanova, Current Kaggle #3
- How to Win Machine Learning Competitions ?
- Kaggle Data Science Bowl 2017 참가기
- Deeplunch팀의 Kaggle Data Science Bowl 도전기(1) - 케글 도전 팁
- 2nd place solution for the 2017 national datascience bowl
- KaggleZeroToAll
- [Kaggle Past Solutions(http://ndres.me/kaggle-past-solutions/)
- First Exploratory Analysis
- First Exploratory Analysis (2)
- A Kaggler's Guide to Model Stacking in Practice
- Stacking(메타 앙상블이라고도 함)은 여러 모델의 정보를 결합하여 새로운 모델을 생성하는 데 사용되는 모델 앙상블 기술
- 종종 누적 모델 (2차 모델이라고도 함)은 매끄러운 성격과 성능이 가장 좋은 각 기본 모델을 강조 표시하고 성능이 좋지 않은 각 기본 모델의 신뢰도를 떨어 뜨리기 때문에 각 개별 모델의 성능을 능가
- 이러한 이유로 스태킹은 기본 모델이 크게 다를 때 가장 효과적
- 간단한 예제와 스태킹이 실제로 구현되는 방법에 대한 가이드를 제공
- 네명이 보드에 187개의 다트를 던진다고 가정
- 150개의 다트점을 우리는 누가 다트를 던졌는지, 어디에 도착했는지 볼 수 있습니다
- 나머지의 경우, 우리는 다트가 도착한 곳만 볼 수 있습니다
- 우리의 임무는 착륙 지점을 기준으로 각 레이블이없는 다트를 던진 사람을 추측
- K-Nearest Neighbors (Base Model1)
- Support Vector Machine (Base Model2)
- Stacking (Meta Ensembling)
- Stacked Model Hyper Parameter Tuning
- Stacking Model Selection and Features
- Stacking in Practice
- Classify Dart Throwers
- Stacking(메타 앙상블이라고도 함)은 여러 모델의 정보를 결합하여 새로운 모델을 생성하는 데 사용되는 모델 앙상블 기술
- Kaggle Python Tutorial on Machine Learning
- The Nature Conservancy Fisheries Monitoring Competition, 1st Place Winner's Interview: Team 'Towards Robust-Optimal Learning of Learning'
- PYCON KOREA 2017 Python 입문자의 Data Science(Kaggle) 도전
- grt123's winning submission for the Kaggle Data Science Bowl 2017
- mlchallenge2017.com
- 캐글 (Kaggle) 소개 - 데이터 과학 (머신러닝) 실전 예제 다루기
- 데이터 보는 마케터가 꼭 해봐야 할 캐글 경진대회
- Who is the "Kaggler"? Let's see them with survey!
- Kaggle-knowhow
- 캐글 뽀개기
- For Beginner To Learn Basic Statistical Analysis
- Item Condition & Brand Effect to Price
- Ideas for 9th Kaggle TensorFlow Speech Recognition Challenge
- Machine Learning Zero-to-Hero: Everything you need in order to compete on Kaggle for the first time, step-by-step!
- Feature Launch: Kaggle API
- 캐글 공식 API를 통해 다양한 머신러닝/딥러닝 데이터셋을 내려받고 서브미션 파일을 제출하는 과정을 알아봅니다
- 자전거 수요 예측
- 오늘의 캐글
- Home Depot Product Search Relevance, 승자의 논평: 1등 | Alex, Andreas, & Nurlan
- Creating your AI projects on Kaggle
- How I got in the top 1 % on Kaggle
- Deep Learning Practitioner의 캐글 2회 참가기
- Pycon korea 2018 kaggle tutorial(kaggle break)
- 1.Titanic_EDA_And_Baseline_Model
- 3.Titanic_Model_Tuning_Final
- TITANIC: MACHINE LEARNING FROM DISASTER (THE KAGGLE CHALLENGE)
- Introduction to Decision Trees (Titanic dataset)
- Start Here: A Gentle Introduction
- A Complete Introduction and Walkthrough
- Work like a Pro with Pipelines and Feature Unions
- Kaggle_NLP_Song
- Why Kaggle will NOT make you a great data-scientist
- I did a Kaggle competition as a semester project at uni. Here’s what I learned
- Feature Selection with Null Importances(KR)
- DataBreak2018: Hello Kaggler -Keynote2 (이정윤 님, data scientist, Microsoft)
- 사이먼킴의 데이터과학 1화 - 데이터 살펴보기
- 사이먼킴의 데이터과학 2화 - 데이터 살펴보기(2부)
- 실습으로 배우는 데이터 사이언스
- 30분이면 하는 캐글 대회 제출 (데이터사이언스 일단 따라하기) 튜토리얼
- 타이타닉 튜토리얼 - Exploratory data analysis, visualization, and machine learning ipynb
- 수비니움의 캐글 따라하기 1강. 타이타닉 (1)
- 수비니움의 kaggle 따라하기 Titanic 2강 - YouTube
- 수비니움의 kaggle 따라하기 Titanic 3강 - YouTube
- 캐글 타이타닉 따라해보기 #1
- 캐글 타이타닉 따라해보기 #2
- 캐글 타이타닉1 - 생존자 예측 모델 만들기 - RomanticQ의 머신러닝
- 캐글 타이타닉2 - 모델 튜닝을 통한 점수 높이기 - RomanticQ의 머신러닝
- 캐글 타이타닉3 - 핸즈온 머신러닝 챕터2 적용 - RomanticQ의 머신러닝
- 캐글 타이타닉4 - 핸즈온 머신러닝 챕터6 적용 - RomanticQ의 머신러닝
- 캐글 타이타닉5 - 핸즈온 머신러닝 챕터7 적용 - RomanticQ의 머신러닝
- 박피디의 게임 개발 이야기 : Python 으로 타이타닉 승객의 생존율 구하기
- Kaggle Winning Solutions - Sortable and searchable compilation of solutions to past Kaggle competitions
- Better Models Faster with Weights & Biases
- 캐글 대회 메달따는 팁. 2. Stochastic weight averaging
- If I had to start learning Data Science again, how would I do it?
- 데이터 과학자의 놀이터이자 배움터··· ‘캐글’ 탐험 안내서 - CIO Korea
- Google Research Football with Manchester City F.C. | Kaggle
- Hello-Kaggle: Kaggle을 처음 접하는 사람들을 위한 문서
- 캐글 넷플릭스(netflix) 데이터를 이용한 데이터 분석 실습 (1)
- 캐글 넷플릭스(netflix) 데이터를 이용한 데이터 분석 실습 (2)
- 캐글 데이터 시각화 넷플릭스(netflix) 데이터를 이용한 데이터 분석 실습 (3)
- 영상 캐글 4그랜드마스터 데이콘 초청 한글 Abhishek Webinar2 Q/A - DACON
- How to break a model in 20 days. A tutorial on production model analytics
- Shopee - Price Match Guarantee | Kaggle
- 캐글 집 가격 예측 대회 탐색적 데이터 분석 - 캐글 스터디 2기 - YouTube
- Upstage Talks 학부 문과생이 세계 랭킹 24위 캐글 그랜드 마스터가 되기까지 - YouTube
- 2020 캐글 설문조사 분석 - YouTube
- AI Factory
- morty: 🔬 Lightweight experiment and configuration manager for small ML/DL projects and Kaggling
- Numerai
- Learn By Implementation – K-Nearest Neighbor
- KNN 추천엔진을 만들자!
- Tutorial To Implement k-Nearest Neighbors in Python From Scratch
- K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14
- 머신러닝 개념 소개 및 kNN 알고리즘 소개
- 파이썬 코딩으로 말하는 데이터 분석 - 9. k-NN (최근접이웃,분류문제)
- k-nearest neighbor algorithm using Python
- A Simple Guide to K-Nearest Neighbor Classification using Python
- Join Us: An Introduction to Using k-NN in Production
- A Summary of Using k-NN in Production
- Introduction to k-Nearest-Neighbors
- Machine Learning Basics with the K-Nearest Neighbors Algorithm
- k-Nearest Neighbors: Who are close to you?
- Simplified KNN Algorithm using Python with coding explanation | by Yogesh Chauhan | Towards Data Science
- ML from Scratch: K-Nearest Neighbors Classifier | by Aman Sharma | Sep, 2020 | Towards Data Science
- Machine Learning Nuggets: Introduction to K-NN Algorithm | by Venkat | Jun, 2021 | Medium
- Create a K-Nearest Neighbors Algorithm from Scratch in Python | by Turner Luke | Apr, 2022 | Towards Data Science
- TOROS N2 - lightweight approximate Nearest Neighbor library which runs faster even with large datasets python
- Pseudo-Labeling to deal with small datasets — What, Why & How?
- Introducing Label Studio, a swiss army knife of data labeling
- Hand Labeling Considered Harmful – O’Reilly
- awesome-open-data-annotation: Open Source Data Annotation & Labelling Tools
- 머신러닝과 예측 알고리즘에 '안성맞춤' 데이터 과학 툴 10선
- The 6 most useful Machine Learning projects of the past year (2018)
- fast.ai Detectron FastText AutoKeras Dopamine vid2vid
- Top 20 Python Machine Learning Open Source Projects, updated
- Highest Rated ML Projects on Github
- A Tour of End-to-End Machine Learning Platforms – Databaseline by Ian Hellström
- ‘머신러닝을 쉽게’··· 추천 오픈소스 도구 14선 - CIO Korea
- '내부 머신러닝 지원' 데이터베이스 8종 - CIO Korea
- 10 Best Data Analysis and Machine Learning Libraries/Tools - DZone AI
- aerosolve
- Alibi - an open source Python library aimed at machine learning model inspection and interpretation
- backend.ai
- docs.backend.ai
- lablup/backend.ai: Backend.AI is a streamlined, container-based computing cluster orchestrator that hosts diverse programming languages and popular computing/ML frameworks, with pluggable heterogeneous accelerator support including CUDA and ROCM
- Backend.AI 오픈소스 기여 가이드 | Lablup Blog
- 백엔드닷에이아이(Backend.AI)로 시작해 보는 AI 오픈소스 소개 및 실습 - 01 - YouTube
- BentoML - A platform for serving and deploying machine learning models http://BentoML.ai
- cortex: Model serving at scale
- cuml: cuML - RAPIDS Machine Learning Library
- Dlib - C++ machine learning library
- DL-Learner - a framework for supervised Machine Learning in OWL, RDF and Description Logics
- DVC - Open-source Version Control System for Machine Learning Projects git과 비슷한 명령어를 통해 data version 관리
- Food data set for machine learning
- Gradio - a free, open-source python library that helps machine learning researchers interact with and share their machine learning models with collaborators and clients with only a few lines of extra code
- h2o.ai h2o, sparkling water, steam
- HAXPlaybook: The HAX Playbook is an interactive tool for generating interaction scenarios to test when designing user-facing AI systems
- hyperopt - Distributed Asynchronous Hyperparameter Optimization in Python
- Impyute - a library of missing data imputation algorithms written in Python 3
- interviews.ai: It is my belief that you, the postgraduate students and job-seekers for whom the book is primarily meant will benefit from reading it; however, it is my hope that even the most experienced researchers will find it fascinating as well
- JupyterFlow - Run your workflow on JupyterHub
- Kobra | A visual programming language for machine learning (in beta)
- LambdaML: Pros and Cons of Serverless for Deep Network Training
- Leaf is a open source framework for machine intelligence, sharing concepts from TensorFlow and Caffe
- LightGBM - table data에 강하다고?
- Machine Learning - Java collection that provides Java packages for developing a machine learning algorithm
- MediaPipe - a cross-platform framework for building multimodal applied machine learning pipelines https://mediapipe.dev
- metarank: A low code Machine Learning tool that personalizes product listings, articles, recommendations, and search results in order to boost sales. A friendly Learn-to-Rank engine
- ML-airport-taxi-out: The ML-airport-taxi-out software is developed to provide a reference implementation to serve as a research example how to train and register Machine Learning (ML) models intended for four distinct use cases: 1) unimpeded AMA taxi out, 2) unimpeded ramp taxi out, 3) impeded AMA taxi out, and 4) impeded ramp taxi out. The software is designed to point to databases which are not provided as part of the software release and thus this software is only intended to serve as an example of best practices. The software is built in python and leverages open-source libraries kedro, scikitlearn, MLFlow, and others. The software provides examples how to build three distinct pipelines for data query and save, data engineering, and data science. These pipelines enable scalable, repeatable, and maintainable development of ML models
- MLDB - the Machine Learning Database
- mlflow - Open source platform for the machine learning lifecycle https://mlflow.org
- Getting started with mlFlow
- How to Display Model Evaluation Metrics Using MLflow Search API
- MLflow - An open platform for the machine learning lifecycle - Abdulrahman Alfozan | PyData Riyadh - YouTube
- How to Utilize MLflow and Kubernetes to Build an Enterprise ML Platform - Databricks
- Combining Machine Learning and MLflow with your Lakehouse. Data Brew | Episode 5 - YouTube
- mlflow를 활용한 pipeline 시스템 구축
- MLflow를 이용한 머신러닝 프로젝트 관리. 박선준- PyCon Korea 2021 - YouTube
- ML Kit
- ml-workspace - All-in-one web-based IDE specialized for machine learning and data science
- 머신러닝 워크스페이스가 이미 구축된 도커 이미지를 제공하는 프로젝트. 모든것이 웹기반
- 라이브러리: Sklearn, TensorFlow, PyTorch, Keras 등등
- IDE: 주피터 노트북, 주피터 랩, VSCode
- 모니터링: TensorBoard, Netdata, Glances
- 버전컨트롤: git, Ungit
- 기타: 리모트 액세스, 리눅스 데스크탑 GUI 액세스, 다중 사용자 액세스, 포트 커스터마이징, 유용한 주피터노트북 확장
- 도커 이미지 하나로 모두 실행(GPU버전 기준, 단 현재는 CUDA10 만을 지원)
docker run -p 8080:8080 --gpus all mltooling/ml-workspace-gpu:latest
- GPU 이외의 CPU 버전, R 특화 버전, 최소화 버전, 가벼운 버전등 도커 이미지 제공
- 위의 나열된 도구들이 제각각 노는것이 아님. 주피터 노트북과, 주피터 랩에는 유용한 확장이 설치
- 예를 들어, 원하는 디렉토리로 이동 후 git 버튼의 클릭으로 버전 컨트롤을 하거나, tensorboard 버튼의 클릭으로 텐서보드를 해당 폴더의 로그 파일을 기반으로 실행하거나, vscode 버튼의 클릭으로 선택한 파일을 VSCode에서 곧바로 편집이 가능
- 머신러닝 워크스페이스가 이미 구축된 도커 이미지를 제공하는 프로젝트. 모든것이 웹기반
- OpenML Home
- Petuum - a distributed machine learning framework
- PlaidML.pdf at main · ConstantPark/DL_Compiler
- PostgresML - an end-to-end machine learning solution
- Predict - see who will convert, before they do
- QLattice
- rc-data - Question answering dataset featured in "Teaching Machines to Read and Comprehend
- replicate: Version control for machine learning
- SynapseML: Simple and Distributed Machine Learning
- SystemML - IBM's SystemML Machine Learning - Now Apache SystemML http://systemml.apache.org
- traingenerator: 🧙 A web app to generate template code for machine learning
- Tribuo - A Java machine learning library
- WSO2 Machine Learner: Why would You care?
- SCALABLE MACHINE LEARNING - THE STATE OF DATAOPS / MLOPS IN 2018
- 머신러닝 오퍼레이션 자동화, MLOps
- MLOps 1. 실험 관리 AI 혁신 속도는 모델 학습에서 배포까지 걸리는 속도에 비례한다
- MLOps: Continuous delivery and automation pipelines in machine learning 번역
- Introducing MLOps - 차문수(Superb AI) :: 제33회 AWSKRUG DataScience모임 - YouTube
- What is MLOps? Machine Learning Operations Explained
- A Chat with Andrew on MLOps: From Model-centric to Data-centric AI - YouTube
- 앤드류 응 교수가 말하는 MLOps
- AI는 '빅데이터(Big Data)'보다 '굿데이터(Good Data)'를 좋아합니다 - 쉽고 재미있는 IT뉴스, 아웃스탠딩!
- 칼럼ㅣAI 프로젝트 악순환 고리 끊어라··· 'ML옵스' 마인드셋이 필요한 이유 - CIO Korea
- MLOps And Machine Learning Roadmap - KDnuggets
- 커피고래가 생각하는 MLOps | 커피고래의 노트
- 하나의 코드 베이스 & 파이프라인으로 여러 도메인에 “코드 수정 없이” AI 모델들을 배포할 수 있을까. 박중배 - PyCon Korea 2021 - YouTube
- Welcome to MLOps for ALL! - 모두의 MLOps
- MLOps를 공부하고자 하는 사람들의 지침서로 만든 프로젝트
- MLOps는 머신러닝을 서비스에 적용하기 더 쉽도록 파이프라인을 통해 머신러닝 엔지니어와 소프트웨어 엔지니어가 소통할 수 있게 함
- 개념 설명뿐 아니라 설정 방법과 Kubeflow에 대한 설명이 포함되어 있어서 MLOps에 관심 있거나 공부해 보고자 하면 아주 좋은 문서
- MLOps: Big Picture in GCP. “Why do we need different CI/CD for… | by Park Chansung | Google Developers Experts | Medium
- ML Ops with Dagster: 5 Key Features for Developing a Continuous Training Pipeline - Thinking Machines Data Science
- MODUCON 2021 글로벌 넘버원이 되기위한 MLOps Learning Path-박찬성Development Enviroment - 개발환경 - YouTube
- 모두의 MLOps (1) MLOps에 첫걸음을 내딛는 분들을 위한 지침서 | by Jongseob Jeon | We’re Team MakinaRocks! | Jan, 2022 | Medium
- 모두의 MLOps (2) MLOps의 단계와 단계별 핵심 기능 | by Jongseob Jeon | We’re Team MakinaRocks! | Mar, 2022 | Medium
- 모두의 MLOps (3) 머신러닝에서의 파이프라인이란. 모두의 MLOps 시리즈 3편. 이번 포스팅에서는 파이프라인이란… | by Jongseob Jeon | We’re Team MakinaRocks! | May, 2022 | Medium
- MLOps정의와 다양한 도구들-1 | Lablup Blog
- MLOps정의와 다양한 도구들-2 | Lablup Blog
- Why data scientists shouldn’t need to know Kubernetes
- MLOps란? MLOps 로드맵 및 MLOps 취업에 대한 생각 | MLOps 강의 추천 있음 - YouTube
- MLOps and DevOps: Why Data Makes It Different – O’Reilly
- Production ML: Getting Started with MLOps | by Hajar Khizou | Towards Data Science
- MLOps or How to Deploy Data Science at Scale | Towards Data Science
- MLOps 생태계 2022년 전망과 Backend.AI로 가속하는 하이퍼스케일 AI 실전로드맵 토크아이티 웨비나, 래블업 - YouTube
- MLOps : 딥랩 세미나 요약- 8회차. 💡 딥랩 세미나 요약은 발표자인 모더레이터의 발표를 듣고 사회자인… | by Eunsoo Park | 모두의연구소 기술 블로그 | May, 2022 | Medium
- INNOPOLIS AI SPACE-S 인공지능 세미나 - MLOps와 높은 진입 장벽 - YouTube
- FastAPI 및 TFServing을 이용한 ML 배포
- FastAPI 및 TFServing 으로 모델을 k8s(GKE) 환경에 배포하여, 몇 가지 성능을 확인해보는 간단한 프로젝트
- ml-deployment-k8s-fastapi: This project shows how to serve an ONNX-optimized image classification model as a web service with FastAPI, Docker, and Kubernetes
- ml-deployment-k8s-tfserving: This project shows how to serve an TF based image classification model as a web service with TFServing, Docker, and Kubernetes(GKE)
- FastAPI의 경우에 고려된 파라미터
- 단순 로컬에서 TF 모델과 TF -> ONNX 변환 모델 추론 속도
- FastAPI에는 ONNX로 변환된 모델을 넣었습니다
- uvicorn, gunicorn worker 의 개수
- TFServing의 경우에 고려된 파라미터
- 로컬/리모트 단일 추론에서 RestAPI 보다 gRPC가 뛰어남을 확인
- 커스텀 TFServing 이미지 빌드시, CPU 최적화된 TF를 컴파일
- TFServing 에 일부 CPU 코어 및 쓰레드 수에 따라 변경해볼만한 파라미터( --inter_op_parallelism_threads, --itra_op_parallelism_threads), TFServing 의 동적 배치 추론 기능 활성화 파라미터( --enable_batching 및 config 파일 작성)
- 두 경우에 모두 공통적으로 고려된 사항
- 서버를 구동하는 k8s 클러스터의 Pod 개수 (노드마다 여러 Pod이 있을 수 있으나, 각 노드별 하나의 Pod만 프로비져닝)
- 클러스터 Node 개수가 많아질 수록 Node의 사양은 ⬇, 클러스터 Node 개수가 적어질 수록 Node의 사양은 ⬆
- FastAPI로 ML 추론 서버를 구축하는 예제가 상당히 많이 존재하지만, 현실적으로는 상용 수준으로 쓰기에는 "어렵다"로 생각
- 불안정한 부분이 많고, 기본적으로 ML 추론용 서버가 갖춰야 할 다양한 기능이 결여되어 있기 때문에, 직접 이를 모두 구현해야 하는 골치아픈 작업이 발생(동적 배치 추론, 모델 버전 관리, 다중 버전의 다중 모델 동시 추론 기능 등)
- 두 저장소 모두 푸쉬, 새로운 모델 릴리즈에 따라 자동으로 GKE 클러스터로 도커 이미지를 빌드한 뒤 배포하는 GitHub Action 도 함께 작성
- nvidia-ml-py를 사용해서 kubernetes에 배포되어 있는 인스턴스에서 MIG 메모리 사용량 체크하기 | by Ryan Kim | Jun, 2022 | Medium
- AIQC: End-to-end deep learning on your desktop or server
- awesome-mlops: A curated list of references for MLOps
- Flyte ML Pipeline에 Flyte 도입하기. ML 오픈 소스의 망망대해 항해하며, ML Pipeline 구성해… | by Ryan Kim | Jun, 2022 | Medium
- MadeWithML: Learn how to responsibly deliver value with ML
- **MLOps-Basics
- MLOps Basics Week 0: Project Setup – Raviraja's Blog 프로젝트 설정
- MLOps Basics Week 1: Model Monitoring - Weights and Bias – Raviraja's Blog 모델 모니터링 - 웨이트와 편견
- MLOps Basics Week 2: Configurations - Hydra – Raviraja's Blog 구성 - 하이드라
- MLOps Basics Week 3: Data Version Control - DVC – Raviraja's Blog 데이터 버전 제어 - DVC
- MLOps Basics Week 4: Model Packaging - ONNX – Raviraja's Blog 모델 포장 - ONX
- MLOps Basics Week 5: Model Packaging - Docker – Raviraja's Blog 모델 포장 - Docker
- MLOps Basics Week 6: CI/CD - GitHub Actions – Raviraja's Blog CI / CD - GitHub 액션
- MLOps Basics Week 7: Container Registry - AWS ECR – Raviraja's Blog 컨테이너 레지스트리 - AWS ECR
- MLOps Basics Week 8: Serverless Deployment - AWS Lambda – Raviraja's Blog 서버리스 배치 - AWS Lambda
- MLOps Basics Week 9: Prediction Monitoring - Kibana – Raviraja's Blog 예측 모니터링 - 키바나
- MLOps Basics Week 10: Summary – Raviraja's Blog 요약**
- MLOps NYC
- wandb.ai Weights & Biases – Developer tools for ML MLOps 인프라
- Bare bones Python implementations of Machine Learning models and algorithms. Aims to cover everything from Data Mining techniques to Deep Learning
- Try Deep Learning in Python now with a fully pre-configured VM
- Simple Machine Learning Model in Python in 5 lines of code
- Your First Machine Learning Project in Python Step-By-Step
- 7 Steps to Mastering Machine Learning With Python
- TOP 5 ESSENTIAL BOOKS FOR PYTHON MACHINE LEARNING
- Machine learning with Python: A Tutorial
- facebook 바벨피쉬 middle learning 파이썬을 이용한 기계학습 알고리즘
- Ask HN: What is the best way to learn Machine Learning in Python?
- Searching for Approximate Nearest Neighbours
- Python, Machine Learning, and Language Wars. A Highly Subjective Point of View
- Example Machine Learning Notebook.ipynb
- linux machine learning
- Tutorial – Getting Started with GraphLab For Machine Learning in Python
- Machine Learning in Python has never been easier
- Essentials of Machine Learning Algorithms (with Python and R Codes)
- K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14
- Pycon2016_ML(DL)
- Machine Learning with Python
- Keynote: Machine Learning for Social Science | SciPy 2016 | Hanna Wallach
- Machine Learning: Python and the Power of Ensembles by Bargava Raman Subramanian
- Python Machine Learning Tutorial, Scikit-Learn: Wine Snob Edition
- Introduction To Machine Learning
- An Introduction to Python for Machine Learning with VS Code and Azure - YouTube
- An Introduction to Python Machine Learning with Perceptrons
- The Perceptron Algorithm explained with Python code
- 퍼셉트론 강의
- Simple Softmax Regression in Python — Tutorial
- 토끼와 거북이가 알려주는 회귀(Regression)
- Simple Linear Regression Tutorial for Machine Learning (ML) | by Towards AI Team | Towards AI | Medium
- 인공지능 컴퓨팅을 위한 파이썬 강좌
- Machine Learning Exercises In Python - Part 1
- Machine Learning Exercises In Python, Part 2
- Clustering with Scikit with GIFs
- Advice for applying Machine Learning
- Unsupervised Machine Learning for Fun & Profit with Basket Clusters
- Data Science – Deep Learning in Python
- 22 must watch talks on Python for Deep Learning, Machine Learning & Data Science (from PyData 2017, Amsterdam)
- Pattern Designing in Python | Pattern Matching in Machine Learning
- Some Essential Hacks and Tricks for Machine Learning with Python
- Supervised Learning with Python
- Unsupervised Learning with Python
- Machine Learning with Python: Easy and robust method to fit nonlinear data
- A Complete Machine Learning Project Walk-Through in Python
- A Complete Machine Learning Project Walk-Through in Python
- A “Data Science for Good“ Machine Learning Project Walk-Through in Python: Part One
- 285+ Machine Learning Projects with Python | by Aman Kharwal | Coders Camp | Medium
- 파이썬으로 머신러닝 배우기 (1/3)
- 파이썬으로 머신러닝 배우기 (2/3)
- 파이썬으로 머신러닝 배우기 (3/3)
- TEAMLAB X Inflearn | 파이썬 머신러닝 입문 강좌
- 100 Days Of ML Code
- Deploying a Machine Learning Model as a REST API
- An Essential Guide to Numpy for Machine Learning in Python
- 4 Machine Learning Techniques with Python
- setscholars.net Applied Data Science in Business & Biological Sciences: Python, R & MATLAB Codes for Beginners
- Custom Transformers and ML Data Pipelines with Python
- How to Transform Research Oriented Code into Machine Learning APIs with Python ML에서의 refactoring에 대한 이야기
- 파이썬과 SQL을 활용한 패혈증(Sepsis) 분석
- 라이브러리 없이 단층 퍼셉트론 구하기 ML with pYTHON
- 사이킷 런의 svm.SVC 사용 및 흉내내어 만들어보기 ML with pYTHON
- Interpretable Machine Learning | LIME In Machine Learning
- Decision Trees in Machine Learning (ML) with Python Tutorial | by Towards AI Team | Towards AI | Nov, 2020 | Medium
- Know How to Create and Visualize a Decision Tree with Python
- Gradient Descent for Machine Learning (ML) 101 with Python Tutorial | Towards AI
- best-of-ml-python: 🏆 A ranked list of awesome machine learning Python libraries. Updated weekly
- 8 Basic Easy to Follow Steps to Learn Machine Learning with Python
- 파이썬, ML - SLiPP 스터디 - SLiPP::위키
- Start Asking Your Data “Why?” - A Gentle Introduction To Causal Inference | PyData Global 2021 - YouTube
- Sliding into Causal Inference, with Python! - Alon Nir | PyData Global 2021 - YouTube
- Building a Machine Learning Web Application Using Flask | by Gerry Christian Ongko | Feb, 2022 | Towards Data Science
- Top 20 Python Machine Learning Open Source Projects, updated
- Top 20 Python 머신러닝 오픈소스 프로젝트
- 10 Python Machine Learning Projects on GitHub
- 9 Python Analytics Libraries
- Top 20 Python Machine Learning Open Source Projects
- The Best Machine Learning Libraries in Python
- ann-writer - An artificial machine learning program that attempts to impersonate the writing style of any given text training set
- baal - Using approximate bayesian posteriors in deep nets for active learning
- Causal ML: A Python Package for Uplift Modeling and Causal Inference with ML
- easyopt: zero-code hyperparameters optimization framework
- edenai-python: The best AI engines in one API: vision, text, speech, translation, OCR, machine learning, etc. SDK and examples for Python developers
- Gradient-Free-Optimizers: Simple and reliable optimization with local, global, population-based and sequential techniques in numerical discrete search spaces
- igel: a machine learning tool that allows to train, test and use models without writing code
- JAX: Autograd and XLA
- ML 최적화 1. JIT & google JAX
- Flax: A neural network library for JAX designed for flexibility
- Haiku - a simple neural network library for JAX developed by some of the authors of Sonnet, a neural network library for TensorFlow
- RLax (pronounced "relax") - a library built on top of JAX that exposes useful building blocks for implementing reinforcement learning agents
- ECE1513H: Introduction to Machine Learning Winter 2020 - LEC0101
- Intro to JAX: Accelerating Machine Learning research - YouTube
- Engineering Trade-Offs in Automatic Differentiation: from TensorFlow and PyTorch to Jax and Julia - Stochastic Lifestyle
- merlin: Kubernetes-friendly ML model management, deployment, and serving
- mindsdb: In-Database Machine Learning
- mljar-supervised: Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
- Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks
- modal - Modular Active Learning framework for Python3
- NapkinML - Pocket-sized implementations of machine learning models in NumPy
- Neptune
- optuna: A hyperparameter optimization framework
- Orange - Open source machine learning and data visualization for novice and expert. Interactive data analysis workflows with a large toolbox
- PHOTONAI
- PyCaret - an open source, low-code machine learning library
- Announcing PyCaret 1.0.0 An open source low-code machine learning library in Python
- PyCaret튜토리얼-회귀.ipynb
- Introduction to Clustering in Python with PyCaret | by Moez Ali | Dec, 2021 | Towards Data Science
- A Practical Guide to ARIMA Models using PyCaret — Part 1 | by Nikhil Gupta | Nov, 2021 | Towards Data Science
- A Practical Guide to ARIMA Models using PyCaret — Part 2 | by Nikhil Gupta | Nov, 2021 | Towards Data Science
- A Practical Guide to ARIMA Models using PyCaret — Part 3 | by Nikhil Gupta | Nov, 2021 | Towards Data Science
- PyCaret 2.3.5 Is Here! Learn What’s New | by Moez Ali | Nov, 2021 | Towards Data Science
- PyCM - Multi-class confusion matrix library in Python http://pycm.ir
- PyGAD Welcome to PyGAD’s documentation! — PyGAD 2.9.0 documentation
- PyLops — PyLops
- PyML - Python을 이용한 머신러닝 (코세리 인증과정 도전 스터디)
- Sacred - a tool to help you configure, organize, log and reproduce experiments
- scikit
- Dive into Machine Learning with ipython notebook and scikit-learn
- Scikit Flow: Easy Deep Learning with TensorFlow and Scikit-learn
- Machine Learning with Scikit Learn | SciPy 2015 Tutorial | Andreas Mueller & Kyle Kastner Part I
- Machine Learning with Scikit Learn | SciPy 2015 Tutorial | Andreas Mueller & Kyle Kastner Part II
- Introduction to Machine Learning in Python with scikit-learn
- Scikit-Learn Cheat Sheet: Python Machine Learning
- Data science in Python: pandas, seaborn, scikit-learn
- Python Machine Learning: Scikit-Learn Tutorial
- Scikit-Learn Cheat Sheet: Python Machine Learning
- Learning to rank with Python scikit-learn
- Scikit-Learn Tutorial: Baseball Analytics in Python Pt 1
- Scikit-Learn Tutorial: Baseball Analytics in Python Pt 2
- Scikit-learn Tutorial
- Managing Machine Learning Workflows with Scikit-learn Pipelines Part 1: A Gentle Introduction
- Machine Learning with Text in scikit-learn (PyCon 2016)
- Scikit Learn Multiclass Learning
- Hacking Scikit-Learn’s Vectorizers
- 8 ways to perform simple linear regression and measure their speed using Python
- Linear Regression Machine Learning Method Using Scikit-learn & Pandas in Python - Tutorial 30
- A beginner’s guide to Linear Regression in Python with Scikit-Learn
- 선형 회귀 모델에서 '선형'이 의미하는 것은 무엇인가?
- “파이썬 라이브러리를 활용한 머신러닝” 사이킷런 0.20 업데이트
- Scikit-Learn: A silver bullet for basic machine learning
- Scikit-Learn Library for Machine Learning in a Nutshell
- 파이썬 사이킷런(sklearn) 패키지에서 ROC곡선 쉽게 그리는 방법!
- Multiple Linear Regression and Visualization in Python 3D linear regression model 시각화
- PCA using Python (scikit-learn)
- 주성분 분석(PCA)의 이해와 실제 데이터(IRIS)에 적용
- 붓꽃 데이터는 이제 그만 - 차원축소 쉽게 이해하기 (PCA, LDA)
- ML impossible: Train 1 billion samples in 5 minutes on your laptop using Vaex and Scikit-Learn
- 파이썬(sklearn) 사이킷런(sklearn) 기초
- Scikit Learn을 이용한 분류와 회귀 머신러닝 with python - YouTube
- Deep Neural Multilayer Perceptron (MLP) with Scikit-learn | by Kaushik Choudhury | Sep, 2020 | Towards Data Science
- 사이킷런 0.24 맛보기! | 텐서 플로우 블로그 (Tensor ≈ Blog)
- Machine learning made easy with Python | Opensource.com
- 김도형: 파이썬 데이터 분석 3종 세트 - statsmodels, scikit-learn, theano - PyCon APAC 2016
- 사이킷런 해부학
- Intro — Scikit-learn course
- Scikit-Learn Course - Machine Learning in Python Tutorial - YouTube
- Scikit-learn Crash Course - Machine Learning Library for Python - YouTube
- Machine learning with missing values — Dirty data science
- How to Build Machine Learning Pipeline with Scikit-Learn? And Why is it essential? – Life With Data
- Adrin Jalali - Custom Scikit-learn Estimators - YouTube
- BayBiggies March 2021 Online Meeting: How to Reduce Scikit-Learn Training Time - YouTube
- scikit-learn with GPU! | 텐서 플로우 블로그 (Tensor ≈ Blog)
- scikit-learn-intelex Intel® Extension for Scikit-learn — Intel(R) Extension for Scikit-learn 2021.4 documentation
- scikit-multilearn: Multi-Label Classification in Python — Multi-Label Classification for Python
- shap: A game theoretic approach to explain the output of any machine learning model
- shapash: Shapash makes Machine Learning models transparent and understandable by everyone
- shrynk - Using Machine Learning to learn how to Compress
- sklearn
- IACS_ComputeFest_sklearn
- hyperopt-sklearn Hyper-parameter optimization for scikit-learn
- Python: Implementing a k-means algorithm with sklearn
- Speeding Up Sklearn’s kNN Algorithms With Custom Distance Metrics Written In Cython
- Implementing a Neural Network from Scratch in Python – An Introduction
- Building Prediction APIs in Python (Part 1): Series Introduction & Basic Example
- Finding the right model parameters
- Feature Selection with sklearn and Pandas
- SMOTE를 통한 데이터 불균형 처리 oversampling 기법의 하나
- Two hours later and still running? How to keep your sklearn.fit under control
- sklearn의 train_test_split() 사용법
- from sklearn import *
- Grid search for parameter tuning. Learn this easy and simple technique to… | by Magdalena Konkiewicz | Oct, 2020 | Towards Data Science
- Feature engineering package with sklearn like functionality
- Feature-engine
- 장점
- 사용 방법 자체는 sklearn과 같이 fit(), transform()으로 사용 가능
- 캐글에서 사용하는 다양한 테크닉이 포함되어 있어 Pandas에서 Scratch로 구현하기 어려운 분들에게 도움
- sckit-learn에서는 data transform을 하기 위해
- as-is: pd.Series로 전달하여 np.array로 결과를 반환하기에 다시 table에 합치는 과정이 일부 번거로움
- to-be: 이 라이브러리는 pd.DataFrame을 전달, pd.DataFrame을 반환해주어 번거로움 감소
- 아쉬운 점
- 파라미터명이 기존 라이브러리와 매칭되지 않는 부분
- 기존 pandas는 coloums 또는 cols로 열을 표현한다면 이 라이브러리에서는 variables라는 명칭 사용
- Feature Creation에서 combination할때 커스텀 함수 기능 부재. 현재는 사칙연산 정도만 제공
- time-series data / text data feature engineering이 추가된다면 확실히 범용적인 툴이 될 수 있을 것 같다는 기대
- slr - Simple linear regression with confidence intervals on parameters and prediction
- smalltrain
- smile - Statistical Machine Intelligence & Learning Engine http://haifengl.github.io/smile
- Streamlit - the first app framework specifically for Machine Learning and Data Science teams
- awesome-streamlit: The purpose of this project is to share knowledge on how awesome Streamlit is and can be
- Streamlit - 파이썬 코드를 커스텀ML도구로 쉽게 만들기 | GeekNews
- Streamlit 101: An in-depth introduction
- KR 파이썬 웹어플리케이션 맛보기 (feat. Streamlit) | by SEO, Wonyoung | Medium
- How to Build a Simple Machine Learning Web App in Python
- NotebookToWebApp/article.md at master · ChristianFJung/NotebookToWebApp
- 멍개의 퇴근후 공부 파이썬 streamlit 다뤄보기 - YouTube
- Build 12 Data Science Apps with Python and Streamlit - Full Course - YouTube
- Python Streamlit 사용법 - 프로토타입 만들기 · 어쩐지 오늘은
- 스트림릿, 머신러닝 웹개발을 쉽고 빠르게 – techNeedle 테크니들
- Deploying a Python machine learning app on Kubernetes - Ketch
- Getting Started with Steamlit for Python - Build a Functioning Web App in Minutes - YouTube
- Streamlit Tutorials - YouTube
- streamlit-google-oauth: An example Streamlit application that incorporates Google OAuth 2.0
- TensorDash A Must-Have Tool for Every Data Scientist | by Arun | Oct, 2020 | Towards Data Science
- tpot - A Python tool that automatically creates and optimizes machine learning pipelines using genetic programming. http://rhiever.github.io/tpot
- Uber
- Machine Learning with R: An Irresponsibly Fast Tutorial
- Essentials of Machine Learning Algorithms (with Python and R Codes)
- Image Manipulation for Machine Learning in R
- glouppe/phd-thesis - Repository of my thesis "Understanding Random Forests"
- Categorical Variable Encoding and Feature Importance Bias with Random Forests
- Random Forests - Leo Breiman and Adele Cutler
- The Unreasonable Effectiveness of Random Forests
- 군중은 똑똑하다 — Random Forest
- Random Forest
- The Random Forest Algorithm
- Improving the Random Forest in Python Part 1
- Hyperparameter Tuning the Random Forest in Python
- Random Forest in Python - A Practical End-to-End Machine Learning Example
- An Introduction to Random Forest using the fastai Library (Machine Learning for Programmers — Part 1)
- An Intuitive Guide to Interpret a Random Forest Model using fastai library (Machine Learning for Programmers – Part 2)
- How to use RandomForest Classifier and Regressor in Python
- An Implementation and Explanation of the Random Forest in Python
- 랜덤포레스트가 뭐길래? 회의에서 당당하게, 수식없이 알아보자
- 3.3 1/4 뉴스 토픽 분류 랜덤포레스트 교차검증 학습예측데이터셋 전처리와 나누기 - YouTube
- 3.3 2/4 뉴스 토픽 분류 랜덤포레스트 교차검증 TF-IDF 로 벡터화 하기 - YouTube
- 3.3 3/4 뉴스 토픽 분류 랜덤포레스트 교차검증 데이콘에 제출에 보기 전에 점수를 미리 알아보는 방법 - YouTube
- 3.3 4/4 뉴스 토픽 분류 랜덤포레스트 교차검증 데이콘에 제출하기 - YouTube
- OpenAI Gym BETA - A toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Go
- REINFORCEMENT LEARNING PART 1: Q-LEARNING AND EXPLORATION
- Reinforcement Learning 1 - Expected Values
- Deep Reinforcement Learning: Pong from Pixels
- Reinforcement Learning Neural Turing Machines
- Language Understanding for Text-based Games Using Deep Reinforcement Learning
- Giraffe: Using Deep Reinforcement Learning to Play Chess
- Guest Post (Part I): Demystifying Deep Reinforcement Learning
- 강화학습 튜토리알 - 인공 신경망으로 '퐁' 게임을 학습시키자 (Andrej Karpathy 포스트 번역)
- Reinforcement Learning 그리고 OpenAI - 1: OpenAI를 위한 개발환경 구축
- Reinforcement Learning 그리고 OpenAI - 2: CartPole예제 이해하기
- Reinforcement Learning 그리고 OpenAI - 3: CartPole and Deep Q Learning (1) DQN(Deep Q-Networks)
- Reinforcement Learning
- RLlib: Scalable Reinforcement Learning — Ray v1.5.2
- KeystoneML - Machine Learning Pipeline
- Feature Engineering at Scale With Spark
- Audience Modeling With Spark ML Pipelines
- Apache Spark로 시작하는 머신러닝 입문
- Kernel-SVM
- Support Vector Machine (SVM) Classification
- SVM: The go-to method machine learning algorithm
- Detection of Leaf and Weed using SVM | Machine Learning | Ruchi Mehra
- ThunderSVM: A Fast SVM Library on GPUs and CPUs
- 초짜 대학원생의 입장에서 이해하는 Support Vector Machine (1)
- 서포트벡터머신Support Vector Machine을 위한 비선형 계획 문제의 쌍대정리
- Support Vector Machine — Introduction to Machine Learning Algorithms
- How to unit test machine learning code
- Effective testing for machine learning systems
- Effective Testing for Machine Learning Projects - Eduardo Blancas | PyData Global 2021 - YouTube
- drifter_ml - ML Testing
- Tutorial
- Practical Theano Tutorial
- brutally short intro to theano word embeddings
- practice - 윈도우에서 Theano 설치하기
- Deep Learning, Jumpto with Theano
- jaeho-kang/deep-learning
- Faster deep learning with GPUs and Theano
- Computation Graph Toolkit - I would like to announce a library that I have been working on with a few collaborators1, called the Computation Graph Toolkit (CGT)
- SymPy and Theano -- Code Generation
- SymPy and Theano -- Scalar Simplification
- SymPy and Theano -- Matrix Expressions
- Recurrent Neural Networks Tutorial, Part 2 – Implementing a RNN with Python, Numpy and Theano
- Practical Theano Tutorial
- Linear Regression In Theano
- Linear Regression(with c++)
- Logistic Regression(1)
- Multivariable Linear Regression(with c++)
- Linear Regression
- Theano-Example-James-010.ipynb
- IPython Theano Tutorials
- SPEEDING UP YOUR NEURAL NETWORK WITH THEANO AND THE GPU
- Installation of Theano on Windows
- Theano Tutorials - Ian Goodfellow
- Theano Yellow Fin
- theano-tutorial
- IPython Theano Tutorials
- Torch
- Awesome Torch - A curated list of awesome Torch tutorials, projects and communities
- A DSL for deep neural networks, supporting Caffe and Torch http://ajtulloch.github.io/dnngraph
- neural-style - Torch implementation of neural style algorithm
- Multi-layer Recurrent Neural Networks (LSTM, GRU, RNN) for character-level language models in Torch
- Recurrent Model of Visual Attention
- 토치(Torch7) 시작하기
- Torch 7 Deep Learning Installation (Ubuntu 14.04)
- Deep Learning with Torch The Long way of Deep Learning with Torch
- Understanding Natural Language with Deep Neural Networks Using Torch
- Generating Faces with Torch
- Lighting the way to deep machine learning
- github.com/torchnet/torchnet
- TorchCraft - Connecting Torch to StarCraft
- RNN(Recurrent Neural Network)과 Torch로 발라드곡 작사하기
- High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
- 토치 학습 자료 한국어 번역본
- Facebook AI Research Sequence-to-Sequence Toolkit
- Transfer Learning - Machine Learning's Next Frontier
- Transfer Learning - Machine Learning's Next Frontier
- Paper is out; Transfer learning for music classification and regression tasks, and behind the scene, negative results, etc
- youtube.com/user/dvbuntu/featured Self-drinving car Transfer Learning Model
- "Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping"
- Transfer Learning is the new frontier. TensorFlow might help implement transfer learning
- Domain Adaptation for Visual Applications: A Comprehensive Survey
- Transfer Learning 의 일종인 Domain Adaptation 에 대한 방대한 리뷰
- TRANSFER LEARNING FOR SOUND CLASSIFICATION
- Inception v3를 활용한 Transfer Learning
- Transfer Learning using differential learning rates
- Taskonomy: Disentangling Task Transfer Learning 리뷰
- cs231n.github.io/transfer-learning
- Hands-On Transfer Learning with Python
- Machine Learning Field Guide
- Machine Learning Tutorials - YouTube
- Getting machine learning to production · Vicki Boykis
- Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020 - YouTube
- Machine Learning Algorithms For Beginners with Code Examples in Python
- Machine Learning by Analogy
- 40+ Modern Tutorials Covering All Aspects of Machine Learning - Data Science Central
- 머신러닝야학
- How to Learn Machine Learning Online Free in 2021?- Free Resources
- 문제해결 관점으로 머신러닝 이해하기 - YouTube