diff --git a/demo.py b/demo.py index c5950c9..ad102a0 100644 --- a/demo.py +++ b/demo.py @@ -16,7 +16,7 @@ from utils.write import write_obj_with_colors, write_obj_with_texture def main(args): - if args.isShow or args.isTexture: + if args.isShow or args.isTexture or args.isCamera: import cv2 from utils.cv_plot import plot_kpt, plot_vertices, plot_pose_box @@ -36,113 +36,169 @@ def main(args): image_path_list.extend(glob(os.path.join(image_folder, files))) total_num = len(image_path_list) - for i, image_path in enumerate(image_path_list): - - name = image_path.strip().split('/')[-1][:-4] - - # read image - image = imread(image_path) - [h, w, c] = image.shape - if c>3: - image = image[:,:,:3] - - # the core: regress position map - if args.isDlib: - max_size = max(image.shape[0], image.shape[1]) - if max_size> 1000: - image = rescale(image, 1000./max_size) - image = (image*255).astype(np.uint8) - pos = prn.process(image) # use dlib to detect face - else: - if image.shape[0] == image.shape[1]: - image = resize(image, (256,256)) - pos = prn.net_forward(image/255.) # input image has been cropped to 256x256 - else: - box = np.array([0, image.shape[1]-1, 0, image.shape[0]-1]) # cropped with bounding box - pos = prn.process(image, box) + if args.isCamera: + + # Create a VideoCapture object and read from input file + # If the input is the camera, pass 0 instead of the video file name + cap = cv2.VideoCapture(0) + + # Check if camera opened successfully + if (cap.isOpened()== False): + print("Error opening video stream or file") - image = image/255. - if pos is None: - continue - - if args.is3d or args.isMat or args.isPose or args.isShow: - # 3D vertices - vertices = prn.get_vertices(pos) - if args.isFront: - save_vertices = frontalize(vertices) + # Read until video is completed + while(cap.isOpened()): + # Capture frame-by-frame + ret, frame = cap.read() + if ret == True: + + if args.isDlib: + max_size = max(frame.shape[0], frame.shape[1]) + if max_size> 1000: + frame = rescale(frame, 1000./max_size) + frame = (frame*255).astype(np.uint8) + pos = prn.process(frame) # use dlib to detect face + else: + if frame.shape[0] == frame.shape[1]: + frame = resize(frame, (256,256)) + pos = prn.net_forward(frame/255.) # input frame has been cropped to 256x256 + else: + box = np.array([0, frame.shape[1]-1, 0, frame.shape[0]-1]) # cropped with bounding box + pos = prn.process(frame, box) + # Normalizing the frame and skiping if there was no one in the frame + frame = frame/255. + if pos is None: + continue + # Get landmarks in frame + kpt = prn.get_landmarks(pos) + + # Display the resulting frame + cv2.imshow('sparse alignment', plot_kpt(frame, kpt)) + + # Press Q on keyboard to exit + if cv2.waitKey(25) & 0xFF == ord('q'): + break + + # Break the loop + else: + break + + # When everything done, release the video capture object + cap.release() + + # Closes all the frames + cv2.destroyAllWindows() + + else: + for i, image_path in enumerate(image_path_list): + + name = image_path.strip().split('/')[-1][:-4] + + # read image + image = imread(image_path) + [h, w, c] = image.shape + if c>3: + image = image[:,:,:3] + + # the core: regress position map + if args.isDlib: + max_size = max(image.shape[0], image.shape[1]) + if max_size> 1000: + image = rescale(image, 1000./max_size) + image = (image*255).astype(np.uint8) + pos = prn.process(image) # use dlib to detect face else: - save_vertices = vertices.copy() - save_vertices[:,1] = h - 1 - save_vertices[:,1] - - if args.isImage: - imsave(os.path.join(save_folder, name + '.jpg'), image) + if image.shape[0] == image.shape[1]: + image = resize(image, (256,256)) + pos = prn.net_forward(image/255.) # input image has been cropped to 256x256 + else: + box = np.array([0, image.shape[1]-1, 0, image.shape[0]-1]) # cropped with bounding box + pos = prn.process(image, box) + + image = image/255. + if pos is None: + continue + + if args.is3d or args.isMat or args.isPose or args.isShow: + # 3D vertices + vertices = prn.get_vertices(pos) + if args.isFront: + save_vertices = frontalize(vertices) + else: + save_vertices = vertices.copy() + save_vertices[:,1] = h - 1 - save_vertices[:,1] + + if args.isImage: + imsave(os.path.join(save_folder, name + '.jpg'), image) + + if args.is3d: + # corresponding colors + colors = prn.get_colors(image, vertices) + + if args.isTexture: + if args.texture_size != 256: + pos_interpolated = resize(pos, (args.texture_size, args.texture_size), preserve_range = True) + else: + pos_interpolated = pos.copy() + texture = cv2.remap(image, pos_interpolated[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) + if args.isMask: + vertices_vis = get_visibility(vertices, prn.triangles, h, w) + uv_mask = get_uv_mask(vertices_vis, prn.triangles, prn.uv_coords, h, w, prn.resolution_op) + uv_mask = resize(uv_mask, (args.texture_size, args.texture_size), preserve_range = True) + texture = texture*uv_mask[:,:,np.newaxis] + write_obj_with_texture(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, texture, prn.uv_coords/prn.resolution_op)#save 3d face with texture(can open with meshlab) + else: + write_obj_with_colors(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, colors) #save 3d face(can open with meshlab) - if args.is3d: - # corresponding colors - colors = prn.get_colors(image, vertices) + if args.isDepth: + depth_image = get_depth_image(vertices, prn.triangles, h, w, True) + depth = get_depth_image(vertices, prn.triangles, h, w) + imsave(os.path.join(save_folder, name + '_depth.jpg'), depth_image) + sio.savemat(os.path.join(save_folder, name + '_depth.mat'), {'depth':depth}) - if args.isTexture: - if args.texture_size != 256: - pos_interpolated = resize(pos, (args.texture_size, args.texture_size), preserve_range = True) - else: - pos_interpolated = pos.copy() - texture = cv2.remap(image, pos_interpolated[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) - if args.isMask: - vertices_vis = get_visibility(vertices, prn.triangles, h, w) - uv_mask = get_uv_mask(vertices_vis, prn.triangles, prn.uv_coords, h, w, prn.resolution_op) - uv_mask = resize(uv_mask, (args.texture_size, args.texture_size), preserve_range = True) - texture = texture*uv_mask[:,:,np.newaxis] - write_obj_with_texture(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, texture, prn.uv_coords/prn.resolution_op)#save 3d face with texture(can open with meshlab) - else: - write_obj_with_colors(os.path.join(save_folder, name + '.obj'), save_vertices, prn.triangles, colors) #save 3d face(can open with meshlab) + if args.isMat: + sio.savemat(os.path.join(save_folder, name + '_mesh.mat'), {'vertices': vertices, 'colors': colors, 'triangles': prn.triangles}) - if args.isDepth: - depth_image = get_depth_image(vertices, prn.triangles, h, w, True) - depth = get_depth_image(vertices, prn.triangles, h, w) - imsave(os.path.join(save_folder, name + '_depth.jpg'), depth_image) - sio.savemat(os.path.join(save_folder, name + '_depth.mat'), {'depth':depth}) + if args.isKpt or args.isShow: + # get landmarks + kpt = prn.get_landmarks(pos) + np.savetxt(os.path.join(save_folder, name + '_kpt.txt'), kpt) - if args.isMat: - sio.savemat(os.path.join(save_folder, name + '_mesh.mat'), {'vertices': vertices, 'colors': colors, 'triangles': prn.triangles}) + if args.isPose or args.isShow: + # estimate pose + camera_matrix, pose = estimate_pose(vertices) + np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose) + np.savetxt(os.path.join(save_folder, name + '_camera_matrix.txt'), camera_matrix) - if args.isKpt or args.isShow: - # get landmarks - kpt = prn.get_landmarks(pos) - np.savetxt(os.path.join(save_folder, name + '_kpt.txt'), kpt) + np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose) - if args.isPose or args.isShow: - # estimate pose - camera_matrix, pose = estimate_pose(vertices) - np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose) - np.savetxt(os.path.join(save_folder, name + '_camera_matrix.txt'), camera_matrix) + if args.isShow: + # ---------- Plot + image_pose = plot_pose_box(image, camera_matrix, kpt) + cv2.imshow('sparse alignment', cv2.cvtColor(np.float32(plot_kpt(image, kpt)), cv2.COLOR_RGB2BGR)) + cv2.imshow('dense alignment', cv2.cvtColor(np.float32(plot_vertices(image, vertices)), cv2.COLOR_RGB2BGR)) + cv2.imshow('pose', cv2.cvtColor(np.float32(plot_pose_box(image, camera_matrix, kpt)), cv2.COLOR_RGB2BGR)) + cv2.waitKey(0) - np.savetxt(os.path.join(save_folder, name + '_pose.txt'), pose) - if args.isShow: - # ---------- Plot - image_pose = plot_pose_box(image, camera_matrix, kpt) - cv2.imshow('sparse alignment', plot_kpt(image, kpt)) - cv2.imshow('dense alignment', plot_vertices(image, vertices)) - cv2.imshow('pose', plot_pose_box(image, camera_matrix, kpt)) - cv2.waitKey(0) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network') parser.add_argument('-i', '--inputDir', default='TestImages/', type=str, - help='path to the input directory, where input images are stored.') + help='path to the input directory, where input images/videos are stored.') parser.add_argument('-o', '--outputDir', default='TestImages/results', type=str, help='path to the output directory, where results(obj,txt files) will be stored.') parser.add_argument('--gpu', default='0', type=str, help='set gpu id, -1 for CPU') parser.add_argument('--isDlib', default=True, type=ast.literal_eval, help='whether to use dlib for detecting face, default is True, if False, the input image should be cropped in advance') - parser.add_argument('--is3d', default=True, type=ast.literal_eval, + parser.add_argument('--is3d', default=False, type=ast.literal_eval, help='whether to output 3D face(.obj). default save colors.') parser.add_argument('--isMat', default=False, type=ast.literal_eval, help='whether to save vertices,color,triangles as mat for matlab showing') - parser.add_argument('--isKpt', default=False, type=ast.literal_eval, + parser.add_argument('--isKpt', default=True, type=ast.literal_eval, help='whether to output key points(.txt)') parser.add_argument('--isPose', default=False, type=ast.literal_eval, help='whether to output estimated pose(.txt)') @@ -164,4 +220,7 @@ def main(args): # update in 2017/7/19 parser.add_argument('--texture_size', default=256, type=int, help='size of texture map, default is 256. need isTexture is True') + # update in 2019/01/03 + parser.add_argument('--isCamera', default=False, type=ast.literal_eval, + help='whether to show live 3d face reconstruction (need opencv)') main(parser.parse_args())