diff --git a/WebCL/3IZ4-2.json b/ClassAssignments/3IZ4-2.json similarity index 100% rename from WebCL/3IZ4-2.json rename to ClassAssignments/3IZ4-2.json diff --git a/WebCL/3IZ4.json b/ClassAssignments/3IZ4.json similarity index 100% rename from WebCL/3IZ4.json rename to ClassAssignments/3IZ4.json diff --git a/WebCL/NokiaDemoModel.json b/ClassAssignments/NokiaDemoModel.json similarity index 100% rename from WebCL/NokiaDemoModel.json rename to ClassAssignments/NokiaDemoModel.json diff --git a/WebCL/NokiaDemoModelGS.json b/ClassAssignments/NokiaDemoModelGS.json similarity index 100% rename from WebCL/NokiaDemoModelGS.json rename to ClassAssignments/NokiaDemoModelGS.json diff --git a/WebCL/YazenGhannam_CAP6721_RayTracer.html b/ClassAssignments/YazenGhannam_CAP6721_RayTracer.html similarity index 100% rename from WebCL/YazenGhannam_CAP6721_RayTracer.html rename to ClassAssignments/YazenGhannam_CAP6721_RayTracer.html diff --git a/WebCL/benzene.json b/ClassAssignments/benzene.json similarity index 100% rename from WebCL/benzene.json rename to ClassAssignments/benzene.json diff --git a/WebCL/gl-matrix.js b/ClassAssignments/gl-matrix.js similarity index 100% rename from WebCL/gl-matrix.js rename to ClassAssignments/gl-matrix.js diff --git a/WebCL/parliament.json b/ClassAssignments/parliament.json similarity index 100% rename from WebCL/parliament.json rename to ClassAssignments/parliament.json diff --git a/WebCL/sampleMesh.json b/ClassAssignments/sampleMesh.json similarity index 100% rename from WebCL/sampleMesh.json rename to ClassAssignments/sampleMesh.json diff --git a/WebCL/sampleSphere.json b/ClassAssignments/sampleSphere.json similarity index 100% rename from WebCL/sampleSphere.json rename to ClassAssignments/sampleSphere.json diff --git a/WebCL/stBasil.json b/ClassAssignments/stBasil.json similarity index 100% rename from WebCL/stBasil.json rename to ClassAssignments/stBasil.json diff --git a/WebCL/stPeter.json b/ClassAssignments/stPeter.json similarity index 100% rename from WebCL/stPeter.json rename to ClassAssignments/stPeter.json diff --git a/TermProject/CAP6721-Project-YazenGhannam.html b/TermProject/CAP6721-Project-YazenGhannam.html new file mode 100644 index 0000000..6e57c15 --- /dev/null +++ b/TermProject/CAP6721-Project-YazenGhannam.html @@ -0,0 +1,21 @@ + + + + + + + + + + +

+ Hello +

+ + + \ No newline at end of file diff --git a/TermProject/CAP6721-Project-YazenGhannam.js b/TermProject/CAP6721-Project-YazenGhannam.js new file mode 100644 index 0000000..da7449f --- /dev/null +++ b/TermProject/CAP6721-Project-YazenGhannam.js @@ -0,0 +1,189 @@ +/* +Author: Yazen Ghannam +Spring 2013 +CAP 6721 +Project +*/ + +var gl = null; +var shaderProgram = null; + +function parseShader(shaderFile){ + var xhttp = new XMLHttpRequest(); + xhttp.overrideMimeType('text/plain'); + xhttp.open("GET", shaderFile, false); + xhttp.send(); + return xhttp.responseText; +} + +function initShaders(){ + + var vertexShaderCode = parseShader("vertex.shader"); + var vertexShader = gl.createShader(gl.VERTEX_SHADER); + gl.shaderSource(vertexShader, vertexShaderCode); + gl.compileShader(vertexShader); + + if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS)) { + alert("Vertex Shader compilation failed: " + + gl.getShaderInfoLog(vertexShader)); + } + + var fragmentShaderCode = parseShader("fragment.shader"); + var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER); + gl.shaderSource(fragmentShader, fragmentShaderCode); + gl.compileShader(fragmentShader); + + if (!gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS)) { + alert("Fragment Shader compilation failed: " + + gl.getShaderInfoLog(fragmentShader)); + } + + shaderProgram = gl.createProgram(); + gl.attachShader(shaderProgram, vertexShader); + gl.attachShader(shaderProgram, fragmentShader); + gl.linkProgram(shaderProgram); + if(!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)){ + alert("Failed to link shaders: " + gl.getProgramInfoLog(shaderProgram)); + } + shaderProgram.positionBuffer = gl.createBuffer(); + gl.bindBuffer(gl.ARRAY_BUFFER, shaderProgram.positionBuffer); + var positionLocation = gl.getAttribLocation(shaderProgram, "aVertexPosition"); + gl.enableVertexAttribArray(positionLocation); + gl.vertexAttribPointer(positionLocation, 3, gl.FLOAT, false, 0, 0); + + shaderProgram.normalBuffer = gl.createBuffer(); + gl.bindBuffer(gl.ARRAY_BUFFER, shaderProgram.normalBuffer); + var normalLocation = gl.getAttribLocation(shaderProgram, "aVertexNormal"); + gl.enableVertexAttribArray(normalLocation); + gl.vertexAttribPointer(normalLocation, 3, gl.FLOAT, false, 0, 0); + + shaderProgram.elementBuffer = gl.createBuffer(); + + shaderProgram.pMatrixLocation = gl.getUniformLocation(shaderProgram, "uPMatrix"); + shaderProgram.mvMatrixLocation = gl.getUniformLocation(shaderProgram, "uMVMatrix"); + //shaderProgram.mMatrixLocation = gl.getUniformLocation(shaderProgram, "uMMatrix"); + // shaderProgram.normalMatrixLocation = gl.getUniformLocation(shaderProgram, "normalMatrix"); + // shaderProgram.cameraPositionLocation = gl.getUniformLocation(shaderProgram, "cameraPosition"); + // shaderProgram.nkLocation = gl.getUniformLocation(shaderProgram, "nk"); + // shaderProgram.rgbMatrixLocation = gl.getUniformLocation(shaderProgram, "rgbMatrix"); + // shaderProgram.gammaLocation = gl.getUniformLocation(shaderProgram, "gamma"); + // shaderProgram.cieLocation = gl.getUniformLocation(shaderProgram, "cie"); + // shaderProgram.texSamplerLocation = gl.getUniformLocation(shaderProgram, "texSampler"); + // shaderProgram.colorTemperatureLocation = gl.getUniformLocation(shaderProgram, "colorTemperature"); + // shaderProgram.enableCubeLocation = gl.getUniformLocation(shaderProgram, "enableCube"); + // shaderProgram.enableHDRLocation = gl.getUniformLocation(shaderProgram, "enableHDR"); + +} + +function draw(){ + + gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); + + var pMatrix = mat4.create(); + var mvMatrix = mat4.create(); + + mat4.perspective(pMatrix, 45, 1, 0.1, 100.0); + + mat4.lookAt(mvMatrix, [0, 0, -6], [0, 0, 0], [0, 1, 0]); + + gl.uniformMatrix4fv(shaderProgram.pMatrixLocation, false, pMatrix); + gl.uniformMatrix4fv(shaderProgram.mvMatrixLocation, false, mvMatrix); + + //console.log(moonVertexPositionBuffer); + + gl.bindBuffer(gl.ARRAY_BUFFER, shaderProgram.positionBuffer); + gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(moonVertexPositionBuffer), gl.STATIC_DRAW); + + gl.bindBuffer(gl.ARRAY_BUFFER, shaderProgram.normalBuffer); + gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(moonVertexNormalBuffer), gl.STATIC_DRAW); + + gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, shaderProgram.elementBuffer); + gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(moonVertexIndexBuffer), gl.STATIC_DRAW); + + gl.drawElements(gl.TRIANGLES, moonVertexIndexBuffer.length, gl.UNSIGNED_SHORT, 0); +} + +var moonVertexPositionBuffer = []; +var moonVertexNormalBuffer = []; +var moonVertexTextureCoordBuffer; +var moonVertexIndexBuffer = []; +function initBuffers() { + var latitudeBands = 30; + var longitudeBands = 30; + var radius = 2; + var vertexPositionData = []; + var normalData = []; + var textureCoordData = []; + for (var latNumber = 0; latNumber <= latitudeBands; latNumber++) { + var theta = latNumber * Math.PI / latitudeBands; + var sinTheta = Math.sin(theta); + var cosTheta = Math.cos(theta); + + for (var longNumber = 0; longNumber <= longitudeBands; longNumber++) { + var phi = longNumber * 2 * Math.PI / longitudeBands; + var sinPhi = Math.sin(phi); + var cosPhi = Math.cos(phi); + + var x = cosPhi * sinTheta; + var y = cosTheta; + var z = sinPhi * sinTheta; + var u = 1 - (longNumber / longitudeBands); + var v = 1 - (latNumber / latitudeBands); + + moonVertexNormalBuffer.push(x); + moonVertexNormalBuffer.push(y); + moonVertexNormalBuffer.push(z); + textureCoordData.push(u); + textureCoordData.push(v); + moonVertexPositionBuffer.push(radius * x); + moonVertexPositionBuffer.push(radius * y); + moonVertexPositionBuffer.push(radius * z); + } + } + var indexData = []; + for (var latNumber = 0; latNumber < latitudeBands; latNumber++) { + for (var longNumber = 0; longNumber < longitudeBands; longNumber++) { + var first = (latNumber * (longitudeBands + 1)) + longNumber; + var second = first + longitudeBands + 1; + moonVertexIndexBuffer.push(first); + moonVertexIndexBuffer.push(second); + moonVertexIndexBuffer.push(first + 1); + + moonVertexIndexBuffer.push(second); + moonVertexIndexBuffer.push(second + 1); + moonVertexIndexBuffer.push(first + 1); + } + } +} + +function initWebGL(canvas){ + var context = null; + + try{ + context = canvas.getContext("webgl") || canvas.getContext("experimental-webgl"); + //alert("WebGL initialized successfully"); + } + catch(e){ + alert("Unable to use WebGL"); + } + return context; +} + +function main(){ + var canvas = document.getElementById("myCanvas"); + gl = initWebGL(canvas); + gl.canvas.width=500; //document.body.offsetWidth; + gl.canvas.height=500; //document.body.offsetHeight; + gl.clearColor(0.0, 0.0, 0.0, 1.0); + gl.enable(gl.DEPTH_TEST); + gl.depthFunc(gl.LEQUAL); + + //alert("main()"); + + initShaders(); + gl.useProgram(shaderProgram); + + initBuffers(); + draw(); + //alert("drawScene()"); +} \ No newline at end of file diff --git a/TermProject/fragment.shader b/TermProject/fragment.shader new file mode 100644 index 0000000..de10c07 --- /dev/null +++ b/TermProject/fragment.shader @@ -0,0 +1,6 @@ +precision mediump float; +varying vec3 color; + +void main(void) { + gl_FragColor = vec4(color, 1.0); +} \ No newline at end of file diff --git a/TermProject/gl-matrix.js b/TermProject/gl-matrix.js new file mode 100644 index 0000000..d8c3863 --- /dev/null +++ b/TermProject/gl-matrix.js @@ -0,0 +1,4118 @@ +/** + * @fileoverview gl-matrix - High performance matrix and vector operations + * @author Brandon Jones + * @author Colin MacKenzie IV + * @version 2.2.0 + */ + +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + + +(function(_global) { + "use strict"; + + var shim = {}; + if (typeof(exports) === 'undefined') { + if(typeof define == 'function' && typeof define.amd == 'object' && define.amd) { + shim.exports = {}; + define(function() { + return shim.exports; + }); + } else { + // gl-matrix lives in a browser, define its namespaces in global + shim.exports = typeof(window) !== 'undefined' ? window : _global; + } + } + else { + // gl-matrix lives in commonjs, define its namespaces in exports + shim.exports = exports; + } + + (function(exports) { + /* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + + +if(!GLMAT_EPSILON) { + var GLMAT_EPSILON = 0.000001; +} + +if(!GLMAT_ARRAY_TYPE) { + var GLMAT_ARRAY_TYPE = (typeof Float32Array !== 'undefined') ? Float32Array : Array; +} + +if(!GLMAT_RANDOM) { + var GLMAT_RANDOM = Math.random; +} + +/** + * @class Common utilities + * @name glMatrix + */ +var glMatrix = {}; + +/** + * Sets the type of array used when creating new vectors and matricies + * + * @param {Type} type Array type, such as Float32Array or Array + */ +glMatrix.setMatrixArrayType = function(type) { + GLMAT_ARRAY_TYPE = type; +} + +if(typeof(exports) !== 'undefined') { + exports.glMatrix = glMatrix; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 2 Dimensional Vector + * @name vec2 + */ + +var vec2 = {}; + +/** + * Creates a new, empty vec2 + * + * @returns {vec2} a new 2D vector + */ +vec2.create = function() { + var out = new GLMAT_ARRAY_TYPE(2); + out[0] = 0; + out[1] = 0; + return out; +}; + +/** + * Creates a new vec2 initialized with values from an existing vector + * + * @param {vec2} a vector to clone + * @returns {vec2} a new 2D vector + */ +vec2.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(2); + out[0] = a[0]; + out[1] = a[1]; + return out; +}; + +/** + * Creates a new vec2 initialized with the given values + * + * @param {Number} x X component + * @param {Number} y Y component + * @returns {vec2} a new 2D vector + */ +vec2.fromValues = function(x, y) { + var out = new GLMAT_ARRAY_TYPE(2); + out[0] = x; + out[1] = y; + return out; +}; + +/** + * Copy the values from one vec2 to another + * + * @param {vec2} out the receiving vector + * @param {vec2} a the source vector + * @returns {vec2} out + */ +vec2.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + return out; +}; + +/** + * Set the components of a vec2 to the given values + * + * @param {vec2} out the receiving vector + * @param {Number} x X component + * @param {Number} y Y component + * @returns {vec2} out + */ +vec2.set = function(out, x, y) { + out[0] = x; + out[1] = y; + return out; +}; + +/** + * Adds two vec2's + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec2} out + */ +vec2.add = function(out, a, b) { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + return out; +}; + +/** + * Subtracts vector b from vector a + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec2} out + */ +vec2.subtract = function(out, a, b) { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + return out; +}; + +/** + * Alias for {@link vec2.subtract} + * @function + */ +vec2.sub = vec2.subtract; + +/** + * Multiplies two vec2's + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec2} out + */ +vec2.multiply = function(out, a, b) { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + return out; +}; + +/** + * Alias for {@link vec2.multiply} + * @function + */ +vec2.mul = vec2.multiply; + +/** + * Divides two vec2's + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec2} out + */ +vec2.divide = function(out, a, b) { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + return out; +}; + +/** + * Alias for {@link vec2.divide} + * @function + */ +vec2.div = vec2.divide; + +/** + * Returns the minimum of two vec2's + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec2} out + */ +vec2.min = function(out, a, b) { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + return out; +}; + +/** + * Returns the maximum of two vec2's + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec2} out + */ +vec2.max = function(out, a, b) { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + return out; +}; + +/** + * Scales a vec2 by a scalar number + * + * @param {vec2} out the receiving vector + * @param {vec2} a the vector to scale + * @param {Number} b amount to scale the vector by + * @returns {vec2} out + */ +vec2.scale = function(out, a, b) { + out[0] = a[0] * b; + out[1] = a[1] * b; + return out; +}; + +/** + * Adds two vec2's after scaling the second operand by a scalar value + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @param {Number} scale the amount to scale b by before adding + * @returns {vec2} out + */ +vec2.scaleAndAdd = function(out, a, b, scale) { + out[0] = a[0] + (b[0] * scale); + out[1] = a[1] + (b[1] * scale); + return out; +}; + +/** + * Calculates the euclidian distance between two vec2's + * + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {Number} distance between a and b + */ +vec2.distance = function(a, b) { + var x = b[0] - a[0], + y = b[1] - a[1]; + return Math.sqrt(x*x + y*y); +}; + +/** + * Alias for {@link vec2.distance} + * @function + */ +vec2.dist = vec2.distance; + +/** + * Calculates the squared euclidian distance between two vec2's + * + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {Number} squared distance between a and b + */ +vec2.squaredDistance = function(a, b) { + var x = b[0] - a[0], + y = b[1] - a[1]; + return x*x + y*y; +}; + +/** + * Alias for {@link vec2.squaredDistance} + * @function + */ +vec2.sqrDist = vec2.squaredDistance; + +/** + * Calculates the length of a vec2 + * + * @param {vec2} a vector to calculate length of + * @returns {Number} length of a + */ +vec2.length = function (a) { + var x = a[0], + y = a[1]; + return Math.sqrt(x*x + y*y); +}; + +/** + * Alias for {@link vec2.length} + * @function + */ +vec2.len = vec2.length; + +/** + * Calculates the squared length of a vec2 + * + * @param {vec2} a vector to calculate squared length of + * @returns {Number} squared length of a + */ +vec2.squaredLength = function (a) { + var x = a[0], + y = a[1]; + return x*x + y*y; +}; + +/** + * Alias for {@link vec2.squaredLength} + * @function + */ +vec2.sqrLen = vec2.squaredLength; + +/** + * Negates the components of a vec2 + * + * @param {vec2} out the receiving vector + * @param {vec2} a vector to negate + * @returns {vec2} out + */ +vec2.negate = function(out, a) { + out[0] = -a[0]; + out[1] = -a[1]; + return out; +}; + +/** + * Normalize a vec2 + * + * @param {vec2} out the receiving vector + * @param {vec2} a vector to normalize + * @returns {vec2} out + */ +vec2.normalize = function(out, a) { + var x = a[0], + y = a[1]; + var len = x*x + y*y; + if (len > 0) { + //TODO: evaluate use of glm_invsqrt here? + len = 1 / Math.sqrt(len); + out[0] = a[0] * len; + out[1] = a[1] * len; + } + return out; +}; + +/** + * Calculates the dot product of two vec2's + * + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {Number} dot product of a and b + */ +vec2.dot = function (a, b) { + return a[0] * b[0] + a[1] * b[1]; +}; + +/** + * Computes the cross product of two vec2's + * Note that the cross product must by definition produce a 3D vector + * + * @param {vec3} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @returns {vec3} out + */ +vec2.cross = function(out, a, b) { + var z = a[0] * b[1] - a[1] * b[0]; + out[0] = out[1] = 0; + out[2] = z; + return out; +}; + +/** + * Performs a linear interpolation between two vec2's + * + * @param {vec2} out the receiving vector + * @param {vec2} a the first operand + * @param {vec2} b the second operand + * @param {Number} t interpolation amount between the two inputs + * @returns {vec2} out + */ +vec2.lerp = function (out, a, b, t) { + var ax = a[0], + ay = a[1]; + out[0] = ax + t * (b[0] - ax); + out[1] = ay + t * (b[1] - ay); + return out; +}; + +/** + * Generates a random vector with the given scale + * + * @param {vec2} out the receiving vector + * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned + * @returns {vec2} out + */ +vec2.random = function (out, scale) { + scale = scale || 1.0; + var r = GLMAT_RANDOM() * 2.0 * Math.PI; + out[0] = Math.cos(r) * scale; + out[1] = Math.sin(r) * scale; + return out; +}; + +/** + * Transforms the vec2 with a mat2 + * + * @param {vec2} out the receiving vector + * @param {vec2} a the vector to transform + * @param {mat2} m matrix to transform with + * @returns {vec2} out + */ +vec2.transformMat2 = function(out, a, m) { + var x = a[0], + y = a[1]; + out[0] = m[0] * x + m[2] * y; + out[1] = m[1] * x + m[3] * y; + return out; +}; + +/** + * Transforms the vec2 with a mat2d + * + * @param {vec2} out the receiving vector + * @param {vec2} a the vector to transform + * @param {mat2d} m matrix to transform with + * @returns {vec2} out + */ +vec2.transformMat2d = function(out, a, m) { + var x = a[0], + y = a[1]; + out[0] = m[0] * x + m[2] * y + m[4]; + out[1] = m[1] * x + m[3] * y + m[5]; + return out; +}; + +/** + * Transforms the vec2 with a mat3 + * 3rd vector component is implicitly '1' + * + * @param {vec2} out the receiving vector + * @param {vec2} a the vector to transform + * @param {mat3} m matrix to transform with + * @returns {vec2} out + */ +vec2.transformMat3 = function(out, a, m) { + var x = a[0], + y = a[1]; + out[0] = m[0] * x + m[3] * y + m[6]; + out[1] = m[1] * x + m[4] * y + m[7]; + return out; +}; + +/** + * Transforms the vec2 with a mat4 + * 3rd vector component is implicitly '0' + * 4th vector component is implicitly '1' + * + * @param {vec2} out the receiving vector + * @param {vec2} a the vector to transform + * @param {mat4} m matrix to transform with + * @returns {vec2} out + */ +vec2.transformMat4 = function(out, a, m) { + var x = a[0], + y = a[1]; + out[0] = m[0] * x + m[4] * y + m[12]; + out[1] = m[1] * x + m[5] * y + m[13]; + return out; +}; + +/** + * Perform some operation over an array of vec2s. + * + * @param {Array} a the array of vectors to iterate over + * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed + * @param {Number} offset Number of elements to skip at the beginning of the array + * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array + * @param {Function} fn Function to call for each vector in the array + * @param {Object} [arg] additional argument to pass to fn + * @returns {Array} a + * @function + */ +vec2.forEach = (function() { + var vec = vec2.create(); + + return function(a, stride, offset, count, fn, arg) { + var i, l; + if(!stride) { + stride = 2; + } + + if(!offset) { + offset = 0; + } + + if(count) { + l = Math.min((count * stride) + offset, a.length); + } else { + l = a.length; + } + + for(i = offset; i < l; i += stride) { + vec[0] = a[i]; vec[1] = a[i+1]; + fn(vec, vec, arg); + a[i] = vec[0]; a[i+1] = vec[1]; + } + + return a; + }; +})(); + +/** + * Returns a string representation of a vector + * + * @param {vec2} vec vector to represent as a string + * @returns {String} string representation of the vector + */ +vec2.str = function (a) { + return 'vec2(' + a[0] + ', ' + a[1] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.vec2 = vec2; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 3 Dimensional Vector + * @name vec3 + */ + +var vec3 = {}; + +/** + * Creates a new, empty vec3 + * + * @returns {vec3} a new 3D vector + */ +vec3.create = function() { + var out = new GLMAT_ARRAY_TYPE(3); + out[0] = 0; + out[1] = 0; + out[2] = 0; + return out; +}; + +/** + * Creates a new vec3 initialized with values from an existing vector + * + * @param {vec3} a vector to clone + * @returns {vec3} a new 3D vector + */ +vec3.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(3); + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + return out; +}; + +/** + * Creates a new vec3 initialized with the given values + * + * @param {Number} x X component + * @param {Number} y Y component + * @param {Number} z Z component + * @returns {vec3} a new 3D vector + */ +vec3.fromValues = function(x, y, z) { + var out = new GLMAT_ARRAY_TYPE(3); + out[0] = x; + out[1] = y; + out[2] = z; + return out; +}; + +/** + * Copy the values from one vec3 to another + * + * @param {vec3} out the receiving vector + * @param {vec3} a the source vector + * @returns {vec3} out + */ +vec3.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + return out; +}; + +/** + * Set the components of a vec3 to the given values + * + * @param {vec3} out the receiving vector + * @param {Number} x X component + * @param {Number} y Y component + * @param {Number} z Z component + * @returns {vec3} out + */ +vec3.set = function(out, x, y, z) { + out[0] = x; + out[1] = y; + out[2] = z; + return out; +}; + +/** + * Adds two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.add = function(out, a, b) { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + out[2] = a[2] + b[2]; + return out; +}; + +/** + * Subtracts vector b from vector a + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.subtract = function(out, a, b) { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + out[2] = a[2] - b[2]; + return out; +}; + +/** + * Alias for {@link vec3.subtract} + * @function + */ +vec3.sub = vec3.subtract; + +/** + * Multiplies two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.multiply = function(out, a, b) { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + out[2] = a[2] * b[2]; + return out; +}; + +/** + * Alias for {@link vec3.multiply} + * @function + */ +vec3.mul = vec3.multiply; + +/** + * Divides two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.divide = function(out, a, b) { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + out[2] = a[2] / b[2]; + return out; +}; + +/** + * Alias for {@link vec3.divide} + * @function + */ +vec3.div = vec3.divide; + +/** + * Returns the minimum of two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.min = function(out, a, b) { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + out[2] = Math.min(a[2], b[2]); + return out; +}; + +/** + * Returns the maximum of two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.max = function(out, a, b) { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + out[2] = Math.max(a[2], b[2]); + return out; +}; + +/** + * Scales a vec3 by a scalar number + * + * @param {vec3} out the receiving vector + * @param {vec3} a the vector to scale + * @param {Number} b amount to scale the vector by + * @returns {vec3} out + */ +vec3.scale = function(out, a, b) { + out[0] = a[0] * b; + out[1] = a[1] * b; + out[2] = a[2] * b; + return out; +}; + +/** + * Adds two vec3's after scaling the second operand by a scalar value + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @param {Number} scale the amount to scale b by before adding + * @returns {vec3} out + */ +vec3.scaleAndAdd = function(out, a, b, scale) { + out[0] = a[0] + (b[0] * scale); + out[1] = a[1] + (b[1] * scale); + out[2] = a[2] + (b[2] * scale); + return out; +}; + +/** + * Calculates the euclidian distance between two vec3's + * + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {Number} distance between a and b + */ +vec3.distance = function(a, b) { + var x = b[0] - a[0], + y = b[1] - a[1], + z = b[2] - a[2]; + return Math.sqrt(x*x + y*y + z*z); +}; + +/** + * Alias for {@link vec3.distance} + * @function + */ +vec3.dist = vec3.distance; + +/** + * Calculates the squared euclidian distance between two vec3's + * + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {Number} squared distance between a and b + */ +vec3.squaredDistance = function(a, b) { + var x = b[0] - a[0], + y = b[1] - a[1], + z = b[2] - a[2]; + return x*x + y*y + z*z; +}; + +/** + * Alias for {@link vec3.squaredDistance} + * @function + */ +vec3.sqrDist = vec3.squaredDistance; + +/** + * Calculates the length of a vec3 + * + * @param {vec3} a vector to calculate length of + * @returns {Number} length of a + */ +vec3.length = function (a) { + var x = a[0], + y = a[1], + z = a[2]; + return Math.sqrt(x*x + y*y + z*z); +}; + +/** + * Alias for {@link vec3.length} + * @function + */ +vec3.len = vec3.length; + +/** + * Calculates the squared length of a vec3 + * + * @param {vec3} a vector to calculate squared length of + * @returns {Number} squared length of a + */ +vec3.squaredLength = function (a) { + var x = a[0], + y = a[1], + z = a[2]; + return x*x + y*y + z*z; +}; + +/** + * Alias for {@link vec3.squaredLength} + * @function + */ +vec3.sqrLen = vec3.squaredLength; + +/** + * Negates the components of a vec3 + * + * @param {vec3} out the receiving vector + * @param {vec3} a vector to negate + * @returns {vec3} out + */ +vec3.negate = function(out, a) { + out[0] = -a[0]; + out[1] = -a[1]; + out[2] = -a[2]; + return out; +}; + +/** + * Normalize a vec3 + * + * @param {vec3} out the receiving vector + * @param {vec3} a vector to normalize + * @returns {vec3} out + */ +vec3.normalize = function(out, a) { + var x = a[0], + y = a[1], + z = a[2]; + var len = x*x + y*y + z*z; + if (len > 0) { + //TODO: evaluate use of glm_invsqrt here? + len = 1 / Math.sqrt(len); + out[0] = a[0] * len; + out[1] = a[1] * len; + out[2] = a[2] * len; + } + return out; +}; + +/** + * Calculates the dot product of two vec3's + * + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {Number} dot product of a and b + */ +vec3.dot = function (a, b) { + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; +}; + +/** + * Computes the cross product of two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @returns {vec3} out + */ +vec3.cross = function(out, a, b) { + var ax = a[0], ay = a[1], az = a[2], + bx = b[0], by = b[1], bz = b[2]; + + out[0] = ay * bz - az * by; + out[1] = az * bx - ax * bz; + out[2] = ax * by - ay * bx; + return out; +}; + +/** + * Performs a linear interpolation between two vec3's + * + * @param {vec3} out the receiving vector + * @param {vec3} a the first operand + * @param {vec3} b the second operand + * @param {Number} t interpolation amount between the two inputs + * @returns {vec3} out + */ +vec3.lerp = function (out, a, b, t) { + var ax = a[0], + ay = a[1], + az = a[2]; + out[0] = ax + t * (b[0] - ax); + out[1] = ay + t * (b[1] - ay); + out[2] = az + t * (b[2] - az); + return out; +}; + +/** + * Generates a random vector with the given scale + * + * @param {vec3} out the receiving vector + * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned + * @returns {vec3} out + */ +vec3.random = function (out, scale) { + scale = scale || 1.0; + + var r = GLMAT_RANDOM() * 2.0 * Math.PI; + var z = (GLMAT_RANDOM() * 2.0) - 1.0; + var zScale = Math.sqrt(1.0-z*z) * scale; + + out[0] = Math.cos(r) * zScale; + out[1] = Math.sin(r) * zScale; + out[2] = z * scale; + return out; +}; + +/** + * Transforms the vec3 with a mat4. + * 4th vector component is implicitly '1' + * + * @param {vec3} out the receiving vector + * @param {vec3} a the vector to transform + * @param {mat4} m matrix to transform with + * @returns {vec3} out + */ +vec3.transformMat4 = function(out, a, m) { + var x = a[0], y = a[1], z = a[2]; + out[0] = m[0] * x + m[4] * y + m[8] * z + m[12]; + out[1] = m[1] * x + m[5] * y + m[9] * z + m[13]; + out[2] = m[2] * x + m[6] * y + m[10] * z + m[14]; + return out; +}; + +/** + * Transforms the vec3 with a mat3. + * + * @param {vec3} out the receiving vector + * @param {vec3} a the vector to transform + * @param {mat4} m the 3x3 matrix to transform with + * @returns {vec3} out + */ +vec3.transformMat3 = function(out, a, m) { + var x = a[0], y = a[1], z = a[2]; + out[0] = x * m[0] + y * m[3] + z * m[6]; + out[1] = x * m[1] + y * m[4] + z * m[7]; + out[2] = x * m[2] + y * m[5] + z * m[8]; + return out; +}; + +/** + * Transforms the vec3 with a quat + * + * @param {vec3} out the receiving vector + * @param {vec3} a the vector to transform + * @param {quat} q quaternion to transform with + * @returns {vec3} out + */ +vec3.transformQuat = function(out, a, q) { + // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations + + var x = a[0], y = a[1], z = a[2], + qx = q[0], qy = q[1], qz = q[2], qw = q[3], + + // calculate quat * vec + ix = qw * x + qy * z - qz * y, + iy = qw * y + qz * x - qx * z, + iz = qw * z + qx * y - qy * x, + iw = -qx * x - qy * y - qz * z; + + // calculate result * inverse quat + out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; + out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; + out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; + return out; +}; + +/** + * Perform some operation over an array of vec3s. + * + * @param {Array} a the array of vectors to iterate over + * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed + * @param {Number} offset Number of elements to skip at the beginning of the array + * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array + * @param {Function} fn Function to call for each vector in the array + * @param {Object} [arg] additional argument to pass to fn + * @returns {Array} a + * @function + */ +vec3.forEach = (function() { + var vec = vec3.create(); + + return function(a, stride, offset, count, fn, arg) { + var i, l; + if(!stride) { + stride = 3; + } + + if(!offset) { + offset = 0; + } + + if(count) { + l = Math.min((count * stride) + offset, a.length); + } else { + l = a.length; + } + + for(i = offset; i < l; i += stride) { + vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; + fn(vec, vec, arg); + a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; + } + + return a; + }; +})(); + +/** + * Returns a string representation of a vector + * + * @param {vec3} vec vector to represent as a string + * @returns {String} string representation of the vector + */ +vec3.str = function (a) { + return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.vec3 = vec3; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 4 Dimensional Vector + * @name vec4 + */ + +var vec4 = {}; + +/** + * Creates a new, empty vec4 + * + * @returns {vec4} a new 4D vector + */ +vec4.create = function() { + var out = new GLMAT_ARRAY_TYPE(4); + out[0] = 0; + out[1] = 0; + out[2] = 0; + out[3] = 0; + return out; +}; + +/** + * Creates a new vec4 initialized with values from an existing vector + * + * @param {vec4} a vector to clone + * @returns {vec4} a new 4D vector + */ +vec4.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(4); + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + return out; +}; + +/** + * Creates a new vec4 initialized with the given values + * + * @param {Number} x X component + * @param {Number} y Y component + * @param {Number} z Z component + * @param {Number} w W component + * @returns {vec4} a new 4D vector + */ +vec4.fromValues = function(x, y, z, w) { + var out = new GLMAT_ARRAY_TYPE(4); + out[0] = x; + out[1] = y; + out[2] = z; + out[3] = w; + return out; +}; + +/** + * Copy the values from one vec4 to another + * + * @param {vec4} out the receiving vector + * @param {vec4} a the source vector + * @returns {vec4} out + */ +vec4.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + return out; +}; + +/** + * Set the components of a vec4 to the given values + * + * @param {vec4} out the receiving vector + * @param {Number} x X component + * @param {Number} y Y component + * @param {Number} z Z component + * @param {Number} w W component + * @returns {vec4} out + */ +vec4.set = function(out, x, y, z, w) { + out[0] = x; + out[1] = y; + out[2] = z; + out[3] = w; + return out; +}; + +/** + * Adds two vec4's + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {vec4} out + */ +vec4.add = function(out, a, b) { + out[0] = a[0] + b[0]; + out[1] = a[1] + b[1]; + out[2] = a[2] + b[2]; + out[3] = a[3] + b[3]; + return out; +}; + +/** + * Subtracts vector b from vector a + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {vec4} out + */ +vec4.subtract = function(out, a, b) { + out[0] = a[0] - b[0]; + out[1] = a[1] - b[1]; + out[2] = a[2] - b[2]; + out[3] = a[3] - b[3]; + return out; +}; + +/** + * Alias for {@link vec4.subtract} + * @function + */ +vec4.sub = vec4.subtract; + +/** + * Multiplies two vec4's + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {vec4} out + */ +vec4.multiply = function(out, a, b) { + out[0] = a[0] * b[0]; + out[1] = a[1] * b[1]; + out[2] = a[2] * b[2]; + out[3] = a[3] * b[3]; + return out; +}; + +/** + * Alias for {@link vec4.multiply} + * @function + */ +vec4.mul = vec4.multiply; + +/** + * Divides two vec4's + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {vec4} out + */ +vec4.divide = function(out, a, b) { + out[0] = a[0] / b[0]; + out[1] = a[1] / b[1]; + out[2] = a[2] / b[2]; + out[3] = a[3] / b[3]; + return out; +}; + +/** + * Alias for {@link vec4.divide} + * @function + */ +vec4.div = vec4.divide; + +/** + * Returns the minimum of two vec4's + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {vec4} out + */ +vec4.min = function(out, a, b) { + out[0] = Math.min(a[0], b[0]); + out[1] = Math.min(a[1], b[1]); + out[2] = Math.min(a[2], b[2]); + out[3] = Math.min(a[3], b[3]); + return out; +}; + +/** + * Returns the maximum of two vec4's + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {vec4} out + */ +vec4.max = function(out, a, b) { + out[0] = Math.max(a[0], b[0]); + out[1] = Math.max(a[1], b[1]); + out[2] = Math.max(a[2], b[2]); + out[3] = Math.max(a[3], b[3]); + return out; +}; + +/** + * Scales a vec4 by a scalar number + * + * @param {vec4} out the receiving vector + * @param {vec4} a the vector to scale + * @param {Number} b amount to scale the vector by + * @returns {vec4} out + */ +vec4.scale = function(out, a, b) { + out[0] = a[0] * b; + out[1] = a[1] * b; + out[2] = a[2] * b; + out[3] = a[3] * b; + return out; +}; + +/** + * Adds two vec4's after scaling the second operand by a scalar value + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @param {Number} scale the amount to scale b by before adding + * @returns {vec4} out + */ +vec4.scaleAndAdd = function(out, a, b, scale) { + out[0] = a[0] + (b[0] * scale); + out[1] = a[1] + (b[1] * scale); + out[2] = a[2] + (b[2] * scale); + out[3] = a[3] + (b[3] * scale); + return out; +}; + +/** + * Calculates the euclidian distance between two vec4's + * + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {Number} distance between a and b + */ +vec4.distance = function(a, b) { + var x = b[0] - a[0], + y = b[1] - a[1], + z = b[2] - a[2], + w = b[3] - a[3]; + return Math.sqrt(x*x + y*y + z*z + w*w); +}; + +/** + * Alias for {@link vec4.distance} + * @function + */ +vec4.dist = vec4.distance; + +/** + * Calculates the squared euclidian distance between two vec4's + * + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {Number} squared distance between a and b + */ +vec4.squaredDistance = function(a, b) { + var x = b[0] - a[0], + y = b[1] - a[1], + z = b[2] - a[2], + w = b[3] - a[3]; + return x*x + y*y + z*z + w*w; +}; + +/** + * Alias for {@link vec4.squaredDistance} + * @function + */ +vec4.sqrDist = vec4.squaredDistance; + +/** + * Calculates the length of a vec4 + * + * @param {vec4} a vector to calculate length of + * @returns {Number} length of a + */ +vec4.length = function (a) { + var x = a[0], + y = a[1], + z = a[2], + w = a[3]; + return Math.sqrt(x*x + y*y + z*z + w*w); +}; + +/** + * Alias for {@link vec4.length} + * @function + */ +vec4.len = vec4.length; + +/** + * Calculates the squared length of a vec4 + * + * @param {vec4} a vector to calculate squared length of + * @returns {Number} squared length of a + */ +vec4.squaredLength = function (a) { + var x = a[0], + y = a[1], + z = a[2], + w = a[3]; + return x*x + y*y + z*z + w*w; +}; + +/** + * Alias for {@link vec4.squaredLength} + * @function + */ +vec4.sqrLen = vec4.squaredLength; + +/** + * Negates the components of a vec4 + * + * @param {vec4} out the receiving vector + * @param {vec4} a vector to negate + * @returns {vec4} out + */ +vec4.negate = function(out, a) { + out[0] = -a[0]; + out[1] = -a[1]; + out[2] = -a[2]; + out[3] = -a[3]; + return out; +}; + +/** + * Normalize a vec4 + * + * @param {vec4} out the receiving vector + * @param {vec4} a vector to normalize + * @returns {vec4} out + */ +vec4.normalize = function(out, a) { + var x = a[0], + y = a[1], + z = a[2], + w = a[3]; + var len = x*x + y*y + z*z + w*w; + if (len > 0) { + len = 1 / Math.sqrt(len); + out[0] = a[0] * len; + out[1] = a[1] * len; + out[2] = a[2] * len; + out[3] = a[3] * len; + } + return out; +}; + +/** + * Calculates the dot product of two vec4's + * + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @returns {Number} dot product of a and b + */ +vec4.dot = function (a, b) { + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; +}; + +/** + * Performs a linear interpolation between two vec4's + * + * @param {vec4} out the receiving vector + * @param {vec4} a the first operand + * @param {vec4} b the second operand + * @param {Number} t interpolation amount between the two inputs + * @returns {vec4} out + */ +vec4.lerp = function (out, a, b, t) { + var ax = a[0], + ay = a[1], + az = a[2], + aw = a[3]; + out[0] = ax + t * (b[0] - ax); + out[1] = ay + t * (b[1] - ay); + out[2] = az + t * (b[2] - az); + out[3] = aw + t * (b[3] - aw); + return out; +}; + +/** + * Generates a random vector with the given scale + * + * @param {vec4} out the receiving vector + * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned + * @returns {vec4} out + */ +vec4.random = function (out, scale) { + scale = scale || 1.0; + + //TODO: This is a pretty awful way of doing this. Find something better. + out[0] = GLMAT_RANDOM(); + out[1] = GLMAT_RANDOM(); + out[2] = GLMAT_RANDOM(); + out[3] = GLMAT_RANDOM(); + vec4.normalize(out, out); + vec4.scale(out, out, scale); + return out; +}; + +/** + * Transforms the vec4 with a mat4. + * + * @param {vec4} out the receiving vector + * @param {vec4} a the vector to transform + * @param {mat4} m matrix to transform with + * @returns {vec4} out + */ +vec4.transformMat4 = function(out, a, m) { + var x = a[0], y = a[1], z = a[2], w = a[3]; + out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; + out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; + out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; + out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; + return out; +}; + +/** + * Transforms the vec4 with a quat + * + * @param {vec4} out the receiving vector + * @param {vec4} a the vector to transform + * @param {quat} q quaternion to transform with + * @returns {vec4} out + */ +vec4.transformQuat = function(out, a, q) { + var x = a[0], y = a[1], z = a[2], + qx = q[0], qy = q[1], qz = q[2], qw = q[3], + + // calculate quat * vec + ix = qw * x + qy * z - qz * y, + iy = qw * y + qz * x - qx * z, + iz = qw * z + qx * y - qy * x, + iw = -qx * x - qy * y - qz * z; + + // calculate result * inverse quat + out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; + out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; + out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; + return out; +}; + +/** + * Perform some operation over an array of vec4s. + * + * @param {Array} a the array of vectors to iterate over + * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed + * @param {Number} offset Number of elements to skip at the beginning of the array + * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array + * @param {Function} fn Function to call for each vector in the array + * @param {Object} [arg] additional argument to pass to fn + * @returns {Array} a + * @function + */ +vec4.forEach = (function() { + var vec = vec4.create(); + + return function(a, stride, offset, count, fn, arg) { + var i, l; + if(!stride) { + stride = 4; + } + + if(!offset) { + offset = 0; + } + + if(count) { + l = Math.min((count * stride) + offset, a.length); + } else { + l = a.length; + } + + for(i = offset; i < l; i += stride) { + vec[0] = a[i]; vec[1] = a[i+1]; vec[2] = a[i+2]; vec[3] = a[i+3]; + fn(vec, vec, arg); + a[i] = vec[0]; a[i+1] = vec[1]; a[i+2] = vec[2]; a[i+3] = vec[3]; + } + + return a; + }; +})(); + +/** + * Returns a string representation of a vector + * + * @param {vec4} vec vector to represent as a string + * @returns {String} string representation of the vector + */ +vec4.str = function (a) { + return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.vec4 = vec4; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 2x2 Matrix + * @name mat2 + */ + +var mat2 = {}; + +/** + * Creates a new identity mat2 + * + * @returns {mat2} a new 2x2 matrix + */ +mat2.create = function() { + var out = new GLMAT_ARRAY_TYPE(4); + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 1; + return out; +}; + +/** + * Creates a new mat2 initialized with values from an existing matrix + * + * @param {mat2} a matrix to clone + * @returns {mat2} a new 2x2 matrix + */ +mat2.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(4); + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + return out; +}; + +/** + * Copy the values from one mat2 to another + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the source matrix + * @returns {mat2} out + */ +mat2.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + return out; +}; + +/** + * Set a mat2 to the identity matrix + * + * @param {mat2} out the receiving matrix + * @returns {mat2} out + */ +mat2.identity = function(out) { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 1; + return out; +}; + +/** + * Transpose the values of a mat2 + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the source matrix + * @returns {mat2} out + */ +mat2.transpose = function(out, a) { + // If we are transposing ourselves we can skip a few steps but have to cache some values + if (out === a) { + var a1 = a[1]; + out[1] = a[2]; + out[2] = a1; + } else { + out[0] = a[0]; + out[1] = a[2]; + out[2] = a[1]; + out[3] = a[3]; + } + + return out; +}; + +/** + * Inverts a mat2 + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the source matrix + * @returns {mat2} out + */ +mat2.invert = function(out, a) { + var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], + + // Calculate the determinant + det = a0 * a3 - a2 * a1; + + if (!det) { + return null; + } + det = 1.0 / det; + + out[0] = a3 * det; + out[1] = -a1 * det; + out[2] = -a2 * det; + out[3] = a0 * det; + + return out; +}; + +/** + * Calculates the adjugate of a mat2 + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the source matrix + * @returns {mat2} out + */ +mat2.adjoint = function(out, a) { + // Caching this value is nessecary if out == a + var a0 = a[0]; + out[0] = a[3]; + out[1] = -a[1]; + out[2] = -a[2]; + out[3] = a0; + + return out; +}; + +/** + * Calculates the determinant of a mat2 + * + * @param {mat2} a the source matrix + * @returns {Number} determinant of a + */ +mat2.determinant = function (a) { + return a[0] * a[3] - a[2] * a[1]; +}; + +/** + * Multiplies two mat2's + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the first operand + * @param {mat2} b the second operand + * @returns {mat2} out + */ +mat2.multiply = function (out, a, b) { + var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3]; + var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; + out[0] = a0 * b0 + a1 * b2; + out[1] = a0 * b1 + a1 * b3; + out[2] = a2 * b0 + a3 * b2; + out[3] = a2 * b1 + a3 * b3; + return out; +}; + +/** + * Alias for {@link mat2.multiply} + * @function + */ +mat2.mul = mat2.multiply; + +/** + * Rotates a mat2 by the given angle + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @returns {mat2} out + */ +mat2.rotate = function (out, a, rad) { + var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], + s = Math.sin(rad), + c = Math.cos(rad); + out[0] = a0 * c + a1 * s; + out[1] = a0 * -s + a1 * c; + out[2] = a2 * c + a3 * s; + out[3] = a2 * -s + a3 * c; + return out; +}; + +/** + * Scales the mat2 by the dimensions in the given vec2 + * + * @param {mat2} out the receiving matrix + * @param {mat2} a the matrix to rotate + * @param {vec2} v the vec2 to scale the matrix by + * @returns {mat2} out + **/ +mat2.scale = function(out, a, v) { + var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], + v0 = v[0], v1 = v[1]; + out[0] = a0 * v0; + out[1] = a1 * v1; + out[2] = a2 * v0; + out[3] = a3 * v1; + return out; +}; + +/** + * Returns a string representation of a mat2 + * + * @param {mat2} mat matrix to represent as a string + * @returns {String} string representation of the matrix + */ +mat2.str = function (a) { + return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.mat2 = mat2; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 2x3 Matrix + * @name mat2d + * + * @description + * A mat2d contains six elements defined as: + *
+ * [a, b,
+ *  c, d,
+ *  tx,ty]
+ * 
+ * This is a short form for the 3x3 matrix: + *
+ * [a, b, 0
+ *  c, d, 0
+ *  tx,ty,1]
+ * 
+ * The last column is ignored so the array is shorter and operations are faster. + */ + +var mat2d = {}; + +/** + * Creates a new identity mat2d + * + * @returns {mat2d} a new 2x3 matrix + */ +mat2d.create = function() { + var out = new GLMAT_ARRAY_TYPE(6); + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 1; + out[4] = 0; + out[5] = 0; + return out; +}; + +/** + * Creates a new mat2d initialized with values from an existing matrix + * + * @param {mat2d} a matrix to clone + * @returns {mat2d} a new 2x3 matrix + */ +mat2d.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(6); + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4]; + out[5] = a[5]; + return out; +}; + +/** + * Copy the values from one mat2d to another + * + * @param {mat2d} out the receiving matrix + * @param {mat2d} a the source matrix + * @returns {mat2d} out + */ +mat2d.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4]; + out[5] = a[5]; + return out; +}; + +/** + * Set a mat2d to the identity matrix + * + * @param {mat2d} out the receiving matrix + * @returns {mat2d} out + */ +mat2d.identity = function(out) { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 1; + out[4] = 0; + out[5] = 0; + return out; +}; + +/** + * Inverts a mat2d + * + * @param {mat2d} out the receiving matrix + * @param {mat2d} a the source matrix + * @returns {mat2d} out + */ +mat2d.invert = function(out, a) { + var aa = a[0], ab = a[1], ac = a[2], ad = a[3], + atx = a[4], aty = a[5]; + + var det = aa * ad - ab * ac; + if(!det){ + return null; + } + det = 1.0 / det; + + out[0] = ad * det; + out[1] = -ab * det; + out[2] = -ac * det; + out[3] = aa * det; + out[4] = (ac * aty - ad * atx) * det; + out[5] = (ab * atx - aa * aty) * det; + return out; +}; + +/** + * Calculates the determinant of a mat2d + * + * @param {mat2d} a the source matrix + * @returns {Number} determinant of a + */ +mat2d.determinant = function (a) { + return a[0] * a[3] - a[1] * a[2]; +}; + +/** + * Multiplies two mat2d's + * + * @param {mat2d} out the receiving matrix + * @param {mat2d} a the first operand + * @param {mat2d} b the second operand + * @returns {mat2d} out + */ +mat2d.multiply = function (out, a, b) { + var aa = a[0], ab = a[1], ac = a[2], ad = a[3], + atx = a[4], aty = a[5], + ba = b[0], bb = b[1], bc = b[2], bd = b[3], + btx = b[4], bty = b[5]; + + out[0] = aa*ba + ab*bc; + out[1] = aa*bb + ab*bd; + out[2] = ac*ba + ad*bc; + out[3] = ac*bb + ad*bd; + out[4] = ba*atx + bc*aty + btx; + out[5] = bb*atx + bd*aty + bty; + return out; +}; + +/** + * Alias for {@link mat2d.multiply} + * @function + */ +mat2d.mul = mat2d.multiply; + + +/** + * Rotates a mat2d by the given angle + * + * @param {mat2d} out the receiving matrix + * @param {mat2d} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @returns {mat2d} out + */ +mat2d.rotate = function (out, a, rad) { + var aa = a[0], + ab = a[1], + ac = a[2], + ad = a[3], + atx = a[4], + aty = a[5], + st = Math.sin(rad), + ct = Math.cos(rad); + + out[0] = aa*ct + ab*st; + out[1] = -aa*st + ab*ct; + out[2] = ac*ct + ad*st; + out[3] = -ac*st + ct*ad; + out[4] = ct*atx + st*aty; + out[5] = ct*aty - st*atx; + return out; +}; + +/** + * Scales the mat2d by the dimensions in the given vec2 + * + * @param {mat2d} out the receiving matrix + * @param {mat2d} a the matrix to translate + * @param {vec2} v the vec2 to scale the matrix by + * @returns {mat2d} out + **/ +mat2d.scale = function(out, a, v) { + var vx = v[0], vy = v[1]; + out[0] = a[0] * vx; + out[1] = a[1] * vy; + out[2] = a[2] * vx; + out[3] = a[3] * vy; + out[4] = a[4] * vx; + out[5] = a[5] * vy; + return out; +}; + +/** + * Translates the mat2d by the dimensions in the given vec2 + * + * @param {mat2d} out the receiving matrix + * @param {mat2d} a the matrix to translate + * @param {vec2} v the vec2 to translate the matrix by + * @returns {mat2d} out + **/ +mat2d.translate = function(out, a, v) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4] + v[0]; + out[5] = a[5] + v[1]; + return out; +}; + +/** + * Returns a string representation of a mat2d + * + * @param {mat2d} a matrix to represent as a string + * @returns {String} string representation of the matrix + */ +mat2d.str = function (a) { + return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + + a[3] + ', ' + a[4] + ', ' + a[5] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.mat2d = mat2d; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 3x3 Matrix + * @name mat3 + */ + +var mat3 = {}; + +/** + * Creates a new identity mat3 + * + * @returns {mat3} a new 3x3 matrix + */ +mat3.create = function() { + var out = new GLMAT_ARRAY_TYPE(9); + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 1; + out[5] = 0; + out[6] = 0; + out[7] = 0; + out[8] = 1; + return out; +}; + +/** + * Copies the upper-left 3x3 values into the given mat3. + * + * @param {mat3} out the receiving 3x3 matrix + * @param {mat4} a the source 4x4 matrix + * @returns {mat3} out + */ +mat3.fromMat4 = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[4]; + out[4] = a[5]; + out[5] = a[6]; + out[6] = a[8]; + out[7] = a[9]; + out[8] = a[10]; + return out; +}; + +/** + * Creates a new mat3 initialized with values from an existing matrix + * + * @param {mat3} a matrix to clone + * @returns {mat3} a new 3x3 matrix + */ +mat3.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(9); + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4]; + out[5] = a[5]; + out[6] = a[6]; + out[7] = a[7]; + out[8] = a[8]; + return out; +}; + +/** + * Copy the values from one mat3 to another + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the source matrix + * @returns {mat3} out + */ +mat3.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4]; + out[5] = a[5]; + out[6] = a[6]; + out[7] = a[7]; + out[8] = a[8]; + return out; +}; + +/** + * Set a mat3 to the identity matrix + * + * @param {mat3} out the receiving matrix + * @returns {mat3} out + */ +mat3.identity = function(out) { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 1; + out[5] = 0; + out[6] = 0; + out[7] = 0; + out[8] = 1; + return out; +}; + +/** + * Transpose the values of a mat3 + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the source matrix + * @returns {mat3} out + */ +mat3.transpose = function(out, a) { + // If we are transposing ourselves we can skip a few steps but have to cache some values + if (out === a) { + var a01 = a[1], a02 = a[2], a12 = a[5]; + out[1] = a[3]; + out[2] = a[6]; + out[3] = a01; + out[5] = a[7]; + out[6] = a02; + out[7] = a12; + } else { + out[0] = a[0]; + out[1] = a[3]; + out[2] = a[6]; + out[3] = a[1]; + out[4] = a[4]; + out[5] = a[7]; + out[6] = a[2]; + out[7] = a[5]; + out[8] = a[8]; + } + + return out; +}; + +/** + * Inverts a mat3 + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the source matrix + * @returns {mat3} out + */ +mat3.invert = function(out, a) { + var a00 = a[0], a01 = a[1], a02 = a[2], + a10 = a[3], a11 = a[4], a12 = a[5], + a20 = a[6], a21 = a[7], a22 = a[8], + + b01 = a22 * a11 - a12 * a21, + b11 = -a22 * a10 + a12 * a20, + b21 = a21 * a10 - a11 * a20, + + // Calculate the determinant + det = a00 * b01 + a01 * b11 + a02 * b21; + + if (!det) { + return null; + } + det = 1.0 / det; + + out[0] = b01 * det; + out[1] = (-a22 * a01 + a02 * a21) * det; + out[2] = (a12 * a01 - a02 * a11) * det; + out[3] = b11 * det; + out[4] = (a22 * a00 - a02 * a20) * det; + out[5] = (-a12 * a00 + a02 * a10) * det; + out[6] = b21 * det; + out[7] = (-a21 * a00 + a01 * a20) * det; + out[8] = (a11 * a00 - a01 * a10) * det; + return out; +}; + +/** + * Calculates the adjugate of a mat3 + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the source matrix + * @returns {mat3} out + */ +mat3.adjoint = function(out, a) { + var a00 = a[0], a01 = a[1], a02 = a[2], + a10 = a[3], a11 = a[4], a12 = a[5], + a20 = a[6], a21 = a[7], a22 = a[8]; + + out[0] = (a11 * a22 - a12 * a21); + out[1] = (a02 * a21 - a01 * a22); + out[2] = (a01 * a12 - a02 * a11); + out[3] = (a12 * a20 - a10 * a22); + out[4] = (a00 * a22 - a02 * a20); + out[5] = (a02 * a10 - a00 * a12); + out[6] = (a10 * a21 - a11 * a20); + out[7] = (a01 * a20 - a00 * a21); + out[8] = (a00 * a11 - a01 * a10); + return out; +}; + +/** + * Calculates the determinant of a mat3 + * + * @param {mat3} a the source matrix + * @returns {Number} determinant of a + */ +mat3.determinant = function (a) { + var a00 = a[0], a01 = a[1], a02 = a[2], + a10 = a[3], a11 = a[4], a12 = a[5], + a20 = a[6], a21 = a[7], a22 = a[8]; + + return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); +}; + +/** + * Multiplies two mat3's + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the first operand + * @param {mat3} b the second operand + * @returns {mat3} out + */ +mat3.multiply = function (out, a, b) { + var a00 = a[0], a01 = a[1], a02 = a[2], + a10 = a[3], a11 = a[4], a12 = a[5], + a20 = a[6], a21 = a[7], a22 = a[8], + + b00 = b[0], b01 = b[1], b02 = b[2], + b10 = b[3], b11 = b[4], b12 = b[5], + b20 = b[6], b21 = b[7], b22 = b[8]; + + out[0] = b00 * a00 + b01 * a10 + b02 * a20; + out[1] = b00 * a01 + b01 * a11 + b02 * a21; + out[2] = b00 * a02 + b01 * a12 + b02 * a22; + + out[3] = b10 * a00 + b11 * a10 + b12 * a20; + out[4] = b10 * a01 + b11 * a11 + b12 * a21; + out[5] = b10 * a02 + b11 * a12 + b12 * a22; + + out[6] = b20 * a00 + b21 * a10 + b22 * a20; + out[7] = b20 * a01 + b21 * a11 + b22 * a21; + out[8] = b20 * a02 + b21 * a12 + b22 * a22; + return out; +}; + +/** + * Alias for {@link mat3.multiply} + * @function + */ +mat3.mul = mat3.multiply; + +/** + * Translate a mat3 by the given vector + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the matrix to translate + * @param {vec2} v vector to translate by + * @returns {mat3} out + */ +mat3.translate = function(out, a, v) { + var a00 = a[0], a01 = a[1], a02 = a[2], + a10 = a[3], a11 = a[4], a12 = a[5], + a20 = a[6], a21 = a[7], a22 = a[8], + x = v[0], y = v[1]; + + out[0] = a00; + out[1] = a01; + out[2] = a02; + + out[3] = a10; + out[4] = a11; + out[5] = a12; + + out[6] = x * a00 + y * a10 + a20; + out[7] = x * a01 + y * a11 + a21; + out[8] = x * a02 + y * a12 + a22; + return out; +}; + +/** + * Rotates a mat3 by the given angle + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @returns {mat3} out + */ +mat3.rotate = function (out, a, rad) { + var a00 = a[0], a01 = a[1], a02 = a[2], + a10 = a[3], a11 = a[4], a12 = a[5], + a20 = a[6], a21 = a[7], a22 = a[8], + + s = Math.sin(rad), + c = Math.cos(rad); + + out[0] = c * a00 + s * a10; + out[1] = c * a01 + s * a11; + out[2] = c * a02 + s * a12; + + out[3] = c * a10 - s * a00; + out[4] = c * a11 - s * a01; + out[5] = c * a12 - s * a02; + + out[6] = a20; + out[7] = a21; + out[8] = a22; + return out; +}; + +/** + * Scales the mat3 by the dimensions in the given vec2 + * + * @param {mat3} out the receiving matrix + * @param {mat3} a the matrix to rotate + * @param {vec2} v the vec2 to scale the matrix by + * @returns {mat3} out + **/ +mat3.scale = function(out, a, v) { + var x = v[0], y = v[1]; + + out[0] = x * a[0]; + out[1] = x * a[1]; + out[2] = x * a[2]; + + out[3] = y * a[3]; + out[4] = y * a[4]; + out[5] = y * a[5]; + + out[6] = a[6]; + out[7] = a[7]; + out[8] = a[8]; + return out; +}; + +/** + * Copies the values from a mat2d into a mat3 + * + * @param {mat3} out the receiving matrix + * @param {mat2d} a the matrix to copy + * @returns {mat3} out + **/ +mat3.fromMat2d = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = 0; + + out[3] = a[2]; + out[4] = a[3]; + out[5] = 0; + + out[6] = a[4]; + out[7] = a[5]; + out[8] = 1; + return out; +}; + +/** +* Calculates a 3x3 matrix from the given quaternion +* +* @param {mat3} out mat3 receiving operation result +* @param {quat} q Quaternion to create matrix from +* +* @returns {mat3} out +*/ +mat3.fromQuat = function (out, q) { + var x = q[0], y = q[1], z = q[2], w = q[3], + x2 = x + x, + y2 = y + y, + z2 = z + z, + + xx = x * x2, + xy = x * y2, + xz = x * z2, + yy = y * y2, + yz = y * z2, + zz = z * z2, + wx = w * x2, + wy = w * y2, + wz = w * z2; + + out[0] = 1 - (yy + zz); + out[3] = xy + wz; + out[6] = xz - wy; + + out[1] = xy - wz; + out[4] = 1 - (xx + zz); + out[7] = yz + wx; + + out[2] = xz + wy; + out[5] = yz - wx; + out[8] = 1 - (xx + yy); + + return out; +}; + +/** +* Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix +* +* @param {mat3} out mat3 receiving operation result +* @param {mat4} a Mat4 to derive the normal matrix from +* +* @returns {mat3} out +*/ +mat3.normalFromMat4 = function (out, a) { + var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], + a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], + a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], + a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], + + b00 = a00 * a11 - a01 * a10, + b01 = a00 * a12 - a02 * a10, + b02 = a00 * a13 - a03 * a10, + b03 = a01 * a12 - a02 * a11, + b04 = a01 * a13 - a03 * a11, + b05 = a02 * a13 - a03 * a12, + b06 = a20 * a31 - a21 * a30, + b07 = a20 * a32 - a22 * a30, + b08 = a20 * a33 - a23 * a30, + b09 = a21 * a32 - a22 * a31, + b10 = a21 * a33 - a23 * a31, + b11 = a22 * a33 - a23 * a32, + + // Calculate the determinant + det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; + + if (!det) { + return null; + } + det = 1.0 / det; + + out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; + out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; + out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; + + out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; + out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; + out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; + + out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; + out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; + out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; + + return out; +}; + +/** + * Returns a string representation of a mat3 + * + * @param {mat3} mat matrix to represent as a string + * @returns {String} string representation of the matrix + */ +mat3.str = function (a) { + return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + + a[6] + ', ' + a[7] + ', ' + a[8] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.mat3 = mat3; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class 4x4 Matrix + * @name mat4 + */ + +var mat4 = {}; + +/** + * Creates a new identity mat4 + * + * @returns {mat4} a new 4x4 matrix + */ +mat4.create = function() { + var out = new GLMAT_ARRAY_TYPE(16); + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out; +}; + +/** + * Creates a new mat4 initialized with values from an existing matrix + * + * @param {mat4} a matrix to clone + * @returns {mat4} a new 4x4 matrix + */ +mat4.clone = function(a) { + var out = new GLMAT_ARRAY_TYPE(16); + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4]; + out[5] = a[5]; + out[6] = a[6]; + out[7] = a[7]; + out[8] = a[8]; + out[9] = a[9]; + out[10] = a[10]; + out[11] = a[11]; + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + return out; +}; + +/** + * Copy the values from one mat4 to another + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the source matrix + * @returns {mat4} out + */ +mat4.copy = function(out, a) { + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[4] = a[4]; + out[5] = a[5]; + out[6] = a[6]; + out[7] = a[7]; + out[8] = a[8]; + out[9] = a[9]; + out[10] = a[10]; + out[11] = a[11]; + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + return out; +}; + +/** + * Set a mat4 to the identity matrix + * + * @param {mat4} out the receiving matrix + * @returns {mat4} out + */ +mat4.identity = function(out) { + out[0] = 1; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = 1; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 1; + out[11] = 0; + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + return out; +}; + +/** + * Transpose the values of a mat4 + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the source matrix + * @returns {mat4} out + */ +mat4.transpose = function(out, a) { + // If we are transposing ourselves we can skip a few steps but have to cache some values + if (out === a) { + var a01 = a[1], a02 = a[2], a03 = a[3], + a12 = a[6], a13 = a[7], + a23 = a[11]; + + out[1] = a[4]; + out[2] = a[8]; + out[3] = a[12]; + out[4] = a01; + out[6] = a[9]; + out[7] = a[13]; + out[8] = a02; + out[9] = a12; + out[11] = a[14]; + out[12] = a03; + out[13] = a13; + out[14] = a23; + } else { + out[0] = a[0]; + out[1] = a[4]; + out[2] = a[8]; + out[3] = a[12]; + out[4] = a[1]; + out[5] = a[5]; + out[6] = a[9]; + out[7] = a[13]; + out[8] = a[2]; + out[9] = a[6]; + out[10] = a[10]; + out[11] = a[14]; + out[12] = a[3]; + out[13] = a[7]; + out[14] = a[11]; + out[15] = a[15]; + } + + return out; +}; + +/** + * Inverts a mat4 + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the source matrix + * @returns {mat4} out + */ +mat4.invert = function(out, a) { + var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], + a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], + a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], + a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], + + b00 = a00 * a11 - a01 * a10, + b01 = a00 * a12 - a02 * a10, + b02 = a00 * a13 - a03 * a10, + b03 = a01 * a12 - a02 * a11, + b04 = a01 * a13 - a03 * a11, + b05 = a02 * a13 - a03 * a12, + b06 = a20 * a31 - a21 * a30, + b07 = a20 * a32 - a22 * a30, + b08 = a20 * a33 - a23 * a30, + b09 = a21 * a32 - a22 * a31, + b10 = a21 * a33 - a23 * a31, + b11 = a22 * a33 - a23 * a32, + + // Calculate the determinant + det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; + + if (!det) { + return null; + } + det = 1.0 / det; + + out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; + out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; + out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; + out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; + out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; + out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; + out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; + out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; + out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; + out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; + out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; + out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; + out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; + out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; + out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; + out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; + + return out; +}; + +/** + * Calculates the adjugate of a mat4 + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the source matrix + * @returns {mat4} out + */ +mat4.adjoint = function(out, a) { + var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], + a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], + a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], + a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; + + out[0] = (a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22)); + out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22)); + out[2] = (a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12)); + out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12)); + out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22)); + out[5] = (a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22)); + out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12)); + out[7] = (a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12)); + out[8] = (a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21)); + out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21)); + out[10] = (a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11)); + out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11)); + out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21)); + out[13] = (a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21)); + out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11)); + out[15] = (a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11)); + return out; +}; + +/** + * Calculates the determinant of a mat4 + * + * @param {mat4} a the source matrix + * @returns {Number} determinant of a + */ +mat4.determinant = function (a) { + var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], + a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], + a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], + a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15], + + b00 = a00 * a11 - a01 * a10, + b01 = a00 * a12 - a02 * a10, + b02 = a00 * a13 - a03 * a10, + b03 = a01 * a12 - a02 * a11, + b04 = a01 * a13 - a03 * a11, + b05 = a02 * a13 - a03 * a12, + b06 = a20 * a31 - a21 * a30, + b07 = a20 * a32 - a22 * a30, + b08 = a20 * a33 - a23 * a30, + b09 = a21 * a32 - a22 * a31, + b10 = a21 * a33 - a23 * a31, + b11 = a22 * a33 - a23 * a32; + + // Calculate the determinant + return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; +}; + +/** + * Multiplies two mat4's + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the first operand + * @param {mat4} b the second operand + * @returns {mat4} out + */ +mat4.multiply = function (out, a, b) { + var a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3], + a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7], + a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11], + a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15]; + + // Cache only the current line of the second matrix + var b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3]; + out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30; + out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31; + out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32; + out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33; + + b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7]; + out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30; + out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31; + out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32; + out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33; + + b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11]; + out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30; + out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31; + out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32; + out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33; + + b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15]; + out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30; + out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31; + out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32; + out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33; + return out; +}; + +/** + * Alias for {@link mat4.multiply} + * @function + */ +mat4.mul = mat4.multiply; + +/** + * Translate a mat4 by the given vector + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the matrix to translate + * @param {vec3} v vector to translate by + * @returns {mat4} out + */ +mat4.translate = function (out, a, v) { + var x = v[0], y = v[1], z = v[2], + a00, a01, a02, a03, + a10, a11, a12, a13, + a20, a21, a22, a23; + + if (a === out) { + out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; + out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; + out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; + out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; + } else { + a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; + a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; + a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; + + out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03; + out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13; + out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23; + + out[12] = a00 * x + a10 * y + a20 * z + a[12]; + out[13] = a01 * x + a11 * y + a21 * z + a[13]; + out[14] = a02 * x + a12 * y + a22 * z + a[14]; + out[15] = a03 * x + a13 * y + a23 * z + a[15]; + } + + return out; +}; + +/** + * Scales the mat4 by the dimensions in the given vec3 + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the matrix to scale + * @param {vec3} v the vec3 to scale the matrix by + * @returns {mat4} out + **/ +mat4.scale = function(out, a, v) { + var x = v[0], y = v[1], z = v[2]; + + out[0] = a[0] * x; + out[1] = a[1] * x; + out[2] = a[2] * x; + out[3] = a[3] * x; + out[4] = a[4] * y; + out[5] = a[5] * y; + out[6] = a[6] * y; + out[7] = a[7] * y; + out[8] = a[8] * z; + out[9] = a[9] * z; + out[10] = a[10] * z; + out[11] = a[11] * z; + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + return out; +}; + +/** + * Rotates a mat4 by the given angle + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @param {vec3} axis the axis to rotate around + * @returns {mat4} out + */ +mat4.rotate = function (out, a, rad, axis) { + var x = axis[0], y = axis[1], z = axis[2], + len = Math.sqrt(x * x + y * y + z * z), + s, c, t, + a00, a01, a02, a03, + a10, a11, a12, a13, + a20, a21, a22, a23, + b00, b01, b02, + b10, b11, b12, + b20, b21, b22; + + if (Math.abs(len) < GLMAT_EPSILON) { return null; } + + len = 1 / len; + x *= len; + y *= len; + z *= len; + + s = Math.sin(rad); + c = Math.cos(rad); + t = 1 - c; + + a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3]; + a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7]; + a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11]; + + // Construct the elements of the rotation matrix + b00 = x * x * t + c; b01 = y * x * t + z * s; b02 = z * x * t - y * s; + b10 = x * y * t - z * s; b11 = y * y * t + c; b12 = z * y * t + x * s; + b20 = x * z * t + y * s; b21 = y * z * t - x * s; b22 = z * z * t + c; + + // Perform rotation-specific matrix multiplication + out[0] = a00 * b00 + a10 * b01 + a20 * b02; + out[1] = a01 * b00 + a11 * b01 + a21 * b02; + out[2] = a02 * b00 + a12 * b01 + a22 * b02; + out[3] = a03 * b00 + a13 * b01 + a23 * b02; + out[4] = a00 * b10 + a10 * b11 + a20 * b12; + out[5] = a01 * b10 + a11 * b11 + a21 * b12; + out[6] = a02 * b10 + a12 * b11 + a22 * b12; + out[7] = a03 * b10 + a13 * b11 + a23 * b12; + out[8] = a00 * b20 + a10 * b21 + a20 * b22; + out[9] = a01 * b20 + a11 * b21 + a21 * b22; + out[10] = a02 * b20 + a12 * b21 + a22 * b22; + out[11] = a03 * b20 + a13 * b21 + a23 * b22; + + if (a !== out) { // If the source and destination differ, copy the unchanged last row + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + } + return out; +}; + +/** + * Rotates a matrix by the given angle around the X axis + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @returns {mat4} out + */ +mat4.rotateX = function (out, a, rad) { + var s = Math.sin(rad), + c = Math.cos(rad), + a10 = a[4], + a11 = a[5], + a12 = a[6], + a13 = a[7], + a20 = a[8], + a21 = a[9], + a22 = a[10], + a23 = a[11]; + + if (a !== out) { // If the source and destination differ, copy the unchanged rows + out[0] = a[0]; + out[1] = a[1]; + out[2] = a[2]; + out[3] = a[3]; + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + } + + // Perform axis-specific matrix multiplication + out[4] = a10 * c + a20 * s; + out[5] = a11 * c + a21 * s; + out[6] = a12 * c + a22 * s; + out[7] = a13 * c + a23 * s; + out[8] = a20 * c - a10 * s; + out[9] = a21 * c - a11 * s; + out[10] = a22 * c - a12 * s; + out[11] = a23 * c - a13 * s; + return out; +}; + +/** + * Rotates a matrix by the given angle around the Y axis + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @returns {mat4} out + */ +mat4.rotateY = function (out, a, rad) { + var s = Math.sin(rad), + c = Math.cos(rad), + a00 = a[0], + a01 = a[1], + a02 = a[2], + a03 = a[3], + a20 = a[8], + a21 = a[9], + a22 = a[10], + a23 = a[11]; + + if (a !== out) { // If the source and destination differ, copy the unchanged rows + out[4] = a[4]; + out[5] = a[5]; + out[6] = a[6]; + out[7] = a[7]; + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + } + + // Perform axis-specific matrix multiplication + out[0] = a00 * c - a20 * s; + out[1] = a01 * c - a21 * s; + out[2] = a02 * c - a22 * s; + out[3] = a03 * c - a23 * s; + out[8] = a00 * s + a20 * c; + out[9] = a01 * s + a21 * c; + out[10] = a02 * s + a22 * c; + out[11] = a03 * s + a23 * c; + return out; +}; + +/** + * Rotates a matrix by the given angle around the Z axis + * + * @param {mat4} out the receiving matrix + * @param {mat4} a the matrix to rotate + * @param {Number} rad the angle to rotate the matrix by + * @returns {mat4} out + */ +mat4.rotateZ = function (out, a, rad) { + var s = Math.sin(rad), + c = Math.cos(rad), + a00 = a[0], + a01 = a[1], + a02 = a[2], + a03 = a[3], + a10 = a[4], + a11 = a[5], + a12 = a[6], + a13 = a[7]; + + if (a !== out) { // If the source and destination differ, copy the unchanged last row + out[8] = a[8]; + out[9] = a[9]; + out[10] = a[10]; + out[11] = a[11]; + out[12] = a[12]; + out[13] = a[13]; + out[14] = a[14]; + out[15] = a[15]; + } + + // Perform axis-specific matrix multiplication + out[0] = a00 * c + a10 * s; + out[1] = a01 * c + a11 * s; + out[2] = a02 * c + a12 * s; + out[3] = a03 * c + a13 * s; + out[4] = a10 * c - a00 * s; + out[5] = a11 * c - a01 * s; + out[6] = a12 * c - a02 * s; + out[7] = a13 * c - a03 * s; + return out; +}; + +/** + * Creates a matrix from a quaternion rotation and vector translation + * This is equivalent to (but much faster than): + * + * mat4.identity(dest); + * mat4.translate(dest, vec); + * var quatMat = mat4.create(); + * quat4.toMat4(quat, quatMat); + * mat4.multiply(dest, quatMat); + * + * @param {mat4} out mat4 receiving operation result + * @param {quat4} q Rotation quaternion + * @param {vec3} v Translation vector + * @returns {mat4} out + */ +mat4.fromRotationTranslation = function (out, q, v) { + // Quaternion math + var x = q[0], y = q[1], z = q[2], w = q[3], + x2 = x + x, + y2 = y + y, + z2 = z + z, + + xx = x * x2, + xy = x * y2, + xz = x * z2, + yy = y * y2, + yz = y * z2, + zz = z * z2, + wx = w * x2, + wy = w * y2, + wz = w * z2; + + out[0] = 1 - (yy + zz); + out[1] = xy + wz; + out[2] = xz - wy; + out[3] = 0; + out[4] = xy - wz; + out[5] = 1 - (xx + zz); + out[6] = yz + wx; + out[7] = 0; + out[8] = xz + wy; + out[9] = yz - wx; + out[10] = 1 - (xx + yy); + out[11] = 0; + out[12] = v[0]; + out[13] = v[1]; + out[14] = v[2]; + out[15] = 1; + + return out; +}; + +/** +* Calculates a 4x4 matrix from the given quaternion +* +* @param {mat4} out mat4 receiving operation result +* @param {quat} q Quaternion to create matrix from +* +* @returns {mat4} out +*/ +mat4.fromQuat = function (out, q) { + var x = q[0], y = q[1], z = q[2], w = q[3], + x2 = x + x, + y2 = y + y, + z2 = z + z, + + xx = x * x2, + xy = x * y2, + xz = x * z2, + yy = y * y2, + yz = y * z2, + zz = z * z2, + wx = w * x2, + wy = w * y2, + wz = w * z2; + + out[0] = 1 - (yy + zz); + out[1] = xy + wz; + out[2] = xz - wy; + out[3] = 0; + + out[4] = xy - wz; + out[5] = 1 - (xx + zz); + out[6] = yz + wx; + out[7] = 0; + + out[8] = xz + wy; + out[9] = yz - wx; + out[10] = 1 - (xx + yy); + out[11] = 0; + + out[12] = 0; + out[13] = 0; + out[14] = 0; + out[15] = 1; + + return out; +}; + +/** + * Generates a frustum matrix with the given bounds + * + * @param {mat4} out mat4 frustum matrix will be written into + * @param {Number} left Left bound of the frustum + * @param {Number} right Right bound of the frustum + * @param {Number} bottom Bottom bound of the frustum + * @param {Number} top Top bound of the frustum + * @param {Number} near Near bound of the frustum + * @param {Number} far Far bound of the frustum + * @returns {mat4} out + */ +mat4.frustum = function (out, left, right, bottom, top, near, far) { + var rl = 1 / (right - left), + tb = 1 / (top - bottom), + nf = 1 / (near - far); + out[0] = (near * 2) * rl; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = (near * 2) * tb; + out[6] = 0; + out[7] = 0; + out[8] = (right + left) * rl; + out[9] = (top + bottom) * tb; + out[10] = (far + near) * nf; + out[11] = -1; + out[12] = 0; + out[13] = 0; + out[14] = (far * near * 2) * nf; + out[15] = 0; + return out; +}; + +/** + * Generates a perspective projection matrix with the given bounds + * + * @param {mat4} out mat4 frustum matrix will be written into + * @param {number} fovy Vertical field of view in radians + * @param {number} aspect Aspect ratio. typically viewport width/height + * @param {number} near Near bound of the frustum + * @param {number} far Far bound of the frustum + * @returns {mat4} out + */ +mat4.perspective = function (out, fovy, aspect, near, far) { + var f = 1.0 / Math.tan(fovy / 2), + nf = 1 / (near - far); + out[0] = f / aspect; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = f; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = (far + near) * nf; + out[11] = -1; + out[12] = 0; + out[13] = 0; + out[14] = (2 * far * near) * nf; + out[15] = 0; + return out; +}; + +/** + * Generates a orthogonal projection matrix with the given bounds + * + * @param {mat4} out mat4 frustum matrix will be written into + * @param {number} left Left bound of the frustum + * @param {number} right Right bound of the frustum + * @param {number} bottom Bottom bound of the frustum + * @param {number} top Top bound of the frustum + * @param {number} near Near bound of the frustum + * @param {number} far Far bound of the frustum + * @returns {mat4} out + */ +mat4.ortho = function (out, left, right, bottom, top, near, far) { + var lr = 1 / (left - right), + bt = 1 / (bottom - top), + nf = 1 / (near - far); + out[0] = -2 * lr; + out[1] = 0; + out[2] = 0; + out[3] = 0; + out[4] = 0; + out[5] = -2 * bt; + out[6] = 0; + out[7] = 0; + out[8] = 0; + out[9] = 0; + out[10] = 2 * nf; + out[11] = 0; + out[12] = (left + right) * lr; + out[13] = (top + bottom) * bt; + out[14] = (far + near) * nf; + out[15] = 1; + return out; +}; + +/** + * Generates a look-at matrix with the given eye position, focal point, and up axis + * + * @param {mat4} out mat4 frustum matrix will be written into + * @param {vec3} eye Position of the viewer + * @param {vec3} center Point the viewer is looking at + * @param {vec3} up vec3 pointing up + * @returns {mat4} out + */ +mat4.lookAt = function (out, eye, center, up) { + var x0, x1, x2, y0, y1, y2, z0, z1, z2, len, + eyex = eye[0], + eyey = eye[1], + eyez = eye[2], + upx = up[0], + upy = up[1], + upz = up[2], + centerx = center[0], + centery = center[1], + centerz = center[2]; + + if (Math.abs(eyex - centerx) < GLMAT_EPSILON && + Math.abs(eyey - centery) < GLMAT_EPSILON && + Math.abs(eyez - centerz) < GLMAT_EPSILON) { + return mat4.identity(out); + } + + z0 = eyex - centerx; + z1 = eyey - centery; + z2 = eyez - centerz; + + len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); + z0 *= len; + z1 *= len; + z2 *= len; + + x0 = upy * z2 - upz * z1; + x1 = upz * z0 - upx * z2; + x2 = upx * z1 - upy * z0; + len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); + if (!len) { + x0 = 0; + x1 = 0; + x2 = 0; + } else { + len = 1 / len; + x0 *= len; + x1 *= len; + x2 *= len; + } + + y0 = z1 * x2 - z2 * x1; + y1 = z2 * x0 - z0 * x2; + y2 = z0 * x1 - z1 * x0; + + len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); + if (!len) { + y0 = 0; + y1 = 0; + y2 = 0; + } else { + len = 1 / len; + y0 *= len; + y1 *= len; + y2 *= len; + } + + out[0] = x0; + out[1] = y0; + out[2] = z0; + out[3] = 0; + out[4] = x1; + out[5] = y1; + out[6] = z1; + out[7] = 0; + out[8] = x2; + out[9] = y2; + out[10] = z2; + out[11] = 0; + out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); + out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); + out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); + out[15] = 1; + + return out; +}; + +/** + * Returns a string representation of a mat4 + * + * @param {mat4} mat matrix to represent as a string + * @returns {String} string representation of the matrix + */ +mat4.str = function (a) { + return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.mat4 = mat4; +} +; +/* Copyright (c) 2013, Brandon Jones, Colin MacKenzie IV. All rights reserved. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR +ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON +ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ + +/** + * @class Quaternion + * @name quat + */ + +var quat = {}; + +/** + * Creates a new identity quat + * + * @returns {quat} a new quaternion + */ +quat.create = function() { + var out = new GLMAT_ARRAY_TYPE(4); + out[0] = 0; + out[1] = 0; + out[2] = 0; + out[3] = 1; + return out; +}; + +/** + * Sets a quaternion to represent the shortest rotation from one + * vector to another. + * + * Both vectors are assumed to be unit length. + * + * @param {quat} out the receiving quaternion. + * @param {vec3} a the initial vector + * @param {vec3} b the destination vector + * @returns {quat} out + */ +quat.rotationTo = (function() { + var tmpvec3 = vec3.create(); + var xUnitVec3 = vec3.fromValues(1,0,0); + var yUnitVec3 = vec3.fromValues(0,1,0); + + return function(out, a, b) { + var dot = vec3.dot(a, b); + if (dot < -0.999999) { + vec3.cross(tmpvec3, xUnitVec3, a); + if (vec3.length(tmpvec3) < 0.000001) + vec3.cross(tmpvec3, yUnitVec3, a); + vec3.normalize(tmpvec3, tmpvec3); + quat.setAxisAngle(out, tmpvec3, Math.PI); + return out; + } else if (dot > 0.999999) { + out[0] = 0; + out[1] = 0; + out[2] = 0; + out[3] = 1; + return out; + } else { + vec3.cross(tmpvec3, a, b); + out[0] = tmpvec3[0]; + out[1] = tmpvec3[1]; + out[2] = tmpvec3[2]; + out[3] = 1 + dot; + return quat.normalize(out, out); + } + }; +})(); + +/** + * Sets the specified quaternion with values corresponding to the given + * axes. Each axis is a vec3 and is expected to be unit length and + * perpendicular to all other specified axes. + * + * @param {vec3} view the vector representing the viewing direction + * @param {vec3} right the vector representing the local "right" direction + * @param {vec3} up the vector representing the local "up" direction + * @returns {quat} out + */ +quat.setAxes = (function() { + var matr = mat3.create(); + + return function(out, view, right, up) { + matr[0] = right[0]; + matr[3] = right[1]; + matr[6] = right[2]; + + matr[1] = up[0]; + matr[4] = up[1]; + matr[7] = up[2]; + + matr[2] = view[0]; + matr[5] = view[1]; + matr[8] = view[2]; + + return quat.normalize(out, quat.fromMat3(out, matr)); + }; +})(); + +/** + * Creates a new quat initialized with values from an existing quaternion + * + * @param {quat} a quaternion to clone + * @returns {quat} a new quaternion + * @function + */ +quat.clone = vec4.clone; + +/** + * Creates a new quat initialized with the given values + * + * @param {Number} x X component + * @param {Number} y Y component + * @param {Number} z Z component + * @param {Number} w W component + * @returns {quat} a new quaternion + * @function + */ +quat.fromValues = vec4.fromValues; + +/** + * Copy the values from one quat to another + * + * @param {quat} out the receiving quaternion + * @param {quat} a the source quaternion + * @returns {quat} out + * @function + */ +quat.copy = vec4.copy; + +/** + * Set the components of a quat to the given values + * + * @param {quat} out the receiving quaternion + * @param {Number} x X component + * @param {Number} y Y component + * @param {Number} z Z component + * @param {Number} w W component + * @returns {quat} out + * @function + */ +quat.set = vec4.set; + +/** + * Set a quat to the identity quaternion + * + * @param {quat} out the receiving quaternion + * @returns {quat} out + */ +quat.identity = function(out) { + out[0] = 0; + out[1] = 0; + out[2] = 0; + out[3] = 1; + return out; +}; + +/** + * Sets a quat from the given angle and rotation axis, + * then returns it. + * + * @param {quat} out the receiving quaternion + * @param {vec3} axis the axis around which to rotate + * @param {Number} rad the angle in radians + * @returns {quat} out + **/ +quat.setAxisAngle = function(out, axis, rad) { + rad = rad * 0.5; + var s = Math.sin(rad); + out[0] = s * axis[0]; + out[1] = s * axis[1]; + out[2] = s * axis[2]; + out[3] = Math.cos(rad); + return out; +}; + +/** + * Adds two quat's + * + * @param {quat} out the receiving quaternion + * @param {quat} a the first operand + * @param {quat} b the second operand + * @returns {quat} out + * @function + */ +quat.add = vec4.add; + +/** + * Multiplies two quat's + * + * @param {quat} out the receiving quaternion + * @param {quat} a the first operand + * @param {quat} b the second operand + * @returns {quat} out + */ +quat.multiply = function(out, a, b) { + var ax = a[0], ay = a[1], az = a[2], aw = a[3], + bx = b[0], by = b[1], bz = b[2], bw = b[3]; + + out[0] = ax * bw + aw * bx + ay * bz - az * by; + out[1] = ay * bw + aw * by + az * bx - ax * bz; + out[2] = az * bw + aw * bz + ax * by - ay * bx; + out[3] = aw * bw - ax * bx - ay * by - az * bz; + return out; +}; + +/** + * Alias for {@link quat.multiply} + * @function + */ +quat.mul = quat.multiply; + +/** + * Scales a quat by a scalar number + * + * @param {quat} out the receiving vector + * @param {quat} a the vector to scale + * @param {Number} b amount to scale the vector by + * @returns {quat} out + * @function + */ +quat.scale = vec4.scale; + +/** + * Rotates a quaternion by the given angle about the X axis + * + * @param {quat} out quat receiving operation result + * @param {quat} a quat to rotate + * @param {number} rad angle (in radians) to rotate + * @returns {quat} out + */ +quat.rotateX = function (out, a, rad) { + rad *= 0.5; + + var ax = a[0], ay = a[1], az = a[2], aw = a[3], + bx = Math.sin(rad), bw = Math.cos(rad); + + out[0] = ax * bw + aw * bx; + out[1] = ay * bw + az * bx; + out[2] = az * bw - ay * bx; + out[3] = aw * bw - ax * bx; + return out; +}; + +/** + * Rotates a quaternion by the given angle about the Y axis + * + * @param {quat} out quat receiving operation result + * @param {quat} a quat to rotate + * @param {number} rad angle (in radians) to rotate + * @returns {quat} out + */ +quat.rotateY = function (out, a, rad) { + rad *= 0.5; + + var ax = a[0], ay = a[1], az = a[2], aw = a[3], + by = Math.sin(rad), bw = Math.cos(rad); + + out[0] = ax * bw - az * by; + out[1] = ay * bw + aw * by; + out[2] = az * bw + ax * by; + out[3] = aw * bw - ay * by; + return out; +}; + +/** + * Rotates a quaternion by the given angle about the Z axis + * + * @param {quat} out quat receiving operation result + * @param {quat} a quat to rotate + * @param {number} rad angle (in radians) to rotate + * @returns {quat} out + */ +quat.rotateZ = function (out, a, rad) { + rad *= 0.5; + + var ax = a[0], ay = a[1], az = a[2], aw = a[3], + bz = Math.sin(rad), bw = Math.cos(rad); + + out[0] = ax * bw + ay * bz; + out[1] = ay * bw - ax * bz; + out[2] = az * bw + aw * bz; + out[3] = aw * bw - az * bz; + return out; +}; + +/** + * Calculates the W component of a quat from the X, Y, and Z components. + * Assumes that quaternion is 1 unit in length. + * Any existing W component will be ignored. + * + * @param {quat} out the receiving quaternion + * @param {quat} a quat to calculate W component of + * @returns {quat} out + */ +quat.calculateW = function (out, a) { + var x = a[0], y = a[1], z = a[2]; + + out[0] = x; + out[1] = y; + out[2] = z; + out[3] = -Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); + return out; +}; + +/** + * Calculates the dot product of two quat's + * + * @param {quat} a the first operand + * @param {quat} b the second operand + * @returns {Number} dot product of a and b + * @function + */ +quat.dot = vec4.dot; + +/** + * Performs a linear interpolation between two quat's + * + * @param {quat} out the receiving quaternion + * @param {quat} a the first operand + * @param {quat} b the second operand + * @param {Number} t interpolation amount between the two inputs + * @returns {quat} out + * @function + */ +quat.lerp = vec4.lerp; + +/** + * Performs a spherical linear interpolation between two quat + * + * @param {quat} out the receiving quaternion + * @param {quat} a the first operand + * @param {quat} b the second operand + * @param {Number} t interpolation amount between the two inputs + * @returns {quat} out + */ +quat.slerp = function (out, a, b, t) { + // benchmarks: + // http://jsperf.com/quaternion-slerp-implementations + + var ax = a[0], ay = a[1], az = a[2], aw = a[3], + bx = b[0], by = b[1], bz = b[2], bw = b[3]; + + var omega, cosom, sinom, scale0, scale1; + + // calc cosine + cosom = ax * bx + ay * by + az * bz + aw * bw; + // adjust signs (if necessary) + if ( cosom < 0.0 ) { + cosom = -cosom; + bx = - bx; + by = - by; + bz = - bz; + bw = - bw; + } + // calculate coefficients + if ( (1.0 - cosom) > 0.000001 ) { + // standard case (slerp) + omega = Math.acos(cosom); + sinom = Math.sin(omega); + scale0 = Math.sin((1.0 - t) * omega) / sinom; + scale1 = Math.sin(t * omega) / sinom; + } else { + // "from" and "to" quaternions are very close + // ... so we can do a linear interpolation + scale0 = 1.0 - t; + scale1 = t; + } + // calculate final values + out[0] = scale0 * ax + scale1 * bx; + out[1] = scale0 * ay + scale1 * by; + out[2] = scale0 * az + scale1 * bz; + out[3] = scale0 * aw + scale1 * bw; + + return out; +}; + +/** + * Calculates the inverse of a quat + * + * @param {quat} out the receiving quaternion + * @param {quat} a quat to calculate inverse of + * @returns {quat} out + */ +quat.invert = function(out, a) { + var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], + dot = a0*a0 + a1*a1 + a2*a2 + a3*a3, + invDot = dot ? 1.0/dot : 0; + + // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0 + + out[0] = -a0*invDot; + out[1] = -a1*invDot; + out[2] = -a2*invDot; + out[3] = a3*invDot; + return out; +}; + +/** + * Calculates the conjugate of a quat + * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result. + * + * @param {quat} out the receiving quaternion + * @param {quat} a quat to calculate conjugate of + * @returns {quat} out + */ +quat.conjugate = function (out, a) { + out[0] = -a[0]; + out[1] = -a[1]; + out[2] = -a[2]; + out[3] = a[3]; + return out; +}; + +/** + * Calculates the length of a quat + * + * @param {quat} a vector to calculate length of + * @returns {Number} length of a + * @function + */ +quat.length = vec4.length; + +/** + * Alias for {@link quat.length} + * @function + */ +quat.len = quat.length; + +/** + * Calculates the squared length of a quat + * + * @param {quat} a vector to calculate squared length of + * @returns {Number} squared length of a + * @function + */ +quat.squaredLength = vec4.squaredLength; + +/** + * Alias for {@link quat.squaredLength} + * @function + */ +quat.sqrLen = quat.squaredLength; + +/** + * Normalize a quat + * + * @param {quat} out the receiving quaternion + * @param {quat} a quaternion to normalize + * @returns {quat} out + * @function + */ +quat.normalize = vec4.normalize; + +/** + * Creates a quaternion from the given 3x3 rotation matrix. + * + * NOTE: The resultant quaternion is not normalized, so you should be sure + * to renormalize the quaternion yourself where necessary. + * + * @param {quat} out the receiving quaternion + * @param {mat3} m rotation matrix + * @returns {quat} out + * @function + */ +quat.fromMat3 = (function() { + // benchmarks: + // http://jsperf.com/typed-array-access-speed + // http://jsperf.com/conversion-of-3x3-matrix-to-quaternion + + var s_iNext = (typeof(Int8Array) !== 'undefined' ? new Int8Array([1,2,0]) : [1,2,0]); + + return function(out, m) { + // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes + // article "Quaternion Calculus and Fast Animation". + var fTrace = m[0] + m[4] + m[8]; + var fRoot; + + if ( fTrace > 0.0 ) { + // |w| > 1/2, may as well choose w > 1/2 + fRoot = Math.sqrt(fTrace + 1.0); // 2w + out[3] = 0.5 * fRoot; + fRoot = 0.5/fRoot; // 1/(4w) + out[0] = (m[7]-m[5])*fRoot; + out[1] = (m[2]-m[6])*fRoot; + out[2] = (m[3]-m[1])*fRoot; + } else { + // |w| <= 1/2 + var i = 0; + if ( m[4] > m[0] ) + i = 1; + if ( m[8] > m[i*3+i] ) + i = 2; + var j = s_iNext[i]; + var k = s_iNext[j]; + + fRoot = Math.sqrt(m[i*3+i]-m[j*3+j]-m[k*3+k] + 1.0); + out[i] = 0.5 * fRoot; + fRoot = 0.5 / fRoot; + out[3] = (m[k*3+j] - m[j*3+k]) * fRoot; + out[j] = (m[j*3+i] + m[i*3+j]) * fRoot; + out[k] = (m[k*3+i] + m[i*3+k]) * fRoot; + } + + return out; + }; +})(); + +/** + * Returns a string representation of a quatenion + * + * @param {quat} vec vector to represent as a string + * @returns {String} string representation of the vector + */ +quat.str = function (a) { + return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; +}; + +if(typeof(exports) !== 'undefined') { + exports.quat = quat; +} +; + + + + + + + + + + + + + + })(shim.exports); +})(this); diff --git a/TermProject/vertex.shader b/TermProject/vertex.shader new file mode 100644 index 0000000..b783cb3 --- /dev/null +++ b/TermProject/vertex.shader @@ -0,0 +1,10 @@ +attribute vec3 aVertexPosition; +attribute vec3 aVertexNormal; +varying mediump vec3 color; +uniform mat4 uPMatrix; +uniform mat4 uMVMatrix; + +void main(void) { + gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); + color = aVertexNormal; +} \ No newline at end of file