forked from 0zgur0/multi-stage-convSTAR-network
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
338 lines (293 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import numpy as np
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
import torch.nn
import argparse
import os
from dataset import Dataset
from models.multi_stage_sequenceencoder import multistageSTARSequentialEncoder, multistageLSTMSequentialEncoder
from models.networkConvRef import model_2DConv
from eval import evaluate_fieldwise
import wandb
def parse_args():
"""
To highlight a few important variables:
--data, hdf5 file, preprocessed data used for training and testing
--gt_path, csv file, hierarchy of crop labels
--seed, int, change the random seed for another round of training, and then aggregate the predictions
--data_canton_labels, json file of a dict, patch indices of the hdf5 grouped by canton ids
--canton_ids_train, list, selected cantons for training; the rest will be used for testing
--checkpoint_dir, str, path to save the trained models
--prediction_dir, str, path to save the predictions
All default values of these variables are those currently being used.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-d', "--data", type=str, default='../Preprocessing/S2_Raw_L2A_CH_2021_hdf5_train.hdf5', help="path to dataset")
parser.add_argument('-b', "--batchsize", default=4, type=int, help="batch size")
parser.add_argument('-w', "--workers", default=8, type=int, help="number of dataset worker threads")
parser.add_argument('-e', "--epochs", default=30, type=int, help="epochs to train")
parser.add_argument('-l', "--learning_rate", default=0.001, type=float, help="learning rate")
parser.add_argument('-s', "--snapshot", default=None,
type=str, help="load weights from snapshot")
parser.add_argument('-c', "--checkpoint_dir", default='trained_models',
type=str,help="directory to save checkpoints")
parser.add_argument('-wd', "--weight_decay", default=0.0001, type=float, help="weight_decay")
parser.add_argument('-hd', "--hidden", default=64, type=int, help="hidden dim")
parser.add_argument('-nl', "--layer", default=6, type=int, help="num layer")
parser.add_argument('-lrs', "--lrSC", default=2, type=int, help="lrScheduler")
parser.add_argument('-nm', "--name", default='msConvSTAR', type=str, help="name")
parser.add_argument('-l1', "--lambda_1", default=0.1, type=float, help="lambda_1")
parser.add_argument('-l2', "--lambda_2", default=0.3, type=float, help="lambda_2")
parser.add_argument('-l3', "--lambda_3", default=0.6, type=float, help="lambda_3")
parser.add_argument('-l_gt', "--lambda_gt", default=0.6, type=float, help="lambda_gt")
parser.add_argument('-dr', "--dropout", default=0.5, type=float, help="dropout of CNN")
parser.add_argument('-stg', "--stage", default=3, type=float, help="num stage")
parser.add_argument('-cp', "--clip", default=5, type=float, help="grad clip")
parser.add_argument('-sd', "--seed", default=0, type=int, help="random seed")
parser.add_argument('-fd', "--fold", default=1, type=int, help="5 fold")
parser.add_argument('-gt', "--gt_path", default='GT_labels_19_21_GP.csv', type=str, help="gt file path")
parser.add_argument('-cell', "--cell", default='star', type=str, help="Cell type: main building block")
parser.add_argument('-id', "--input_dim", default=4, type=int, help="Input channel size")
parser.add_argument('-cm', "--apply_cm", default=False, type=bool, help="apply cloud masking")
parser.add_argument('-pred', "--prediction_dir", default='predictions', type=str,help="directory to save predictions")
parser.add_argument('-exp', "--experiment_id", default=0, type=int, help="times of running the experiment")
parser.add_argument('--data_canton_labels', default = "../Preprocessing/S2_Raw_L2A_CH_2021_hdf5_train_canton_labels.json", type = str, help="Canton labels for each patch in gt")
parser.add_argument('--canton_ids_train', default = ["0", "3", "5", "14", "18", "19", "20", "25"], type=list, help="Canton ids to train")
return parser.parse_args()
class stepCount():
def __init__(self, init_step=0):
self.step = init_step
def count(self):
self.step += 1
def reset(self):
self.step = 0
def main(
datadir=None,
data_canton_labels_dir=None,
canton_ids_train=None,
batchsize=1,
workers=12,
epochs=1,
lr=1e-3,
snapshot=None,
checkpoint_dir=None,
experiment_id=None,
prediction_dir=None,
weight_decay=0.0000,
name='debug',
layer=6,
hidden=64,
lrS=1,
lambda_1=1,
lambda_2=1,
lambda_3=1,
lambda_gt=1,
stage=3,
clip=1,
fold_num=None,
gt_path=None,
cell=None,
dropout=None,
input_dim=None,
apply_cm=None
):
checkpoint_dir = f"{checkpoint_dir}_{experiment_id}"
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
traindataset = Dataset(datadir, 0., 'train', False, fold_num, gt_path, num_channel=input_dim, apply_cloud_masking=apply_cm, data_canton_labels_dir=data_canton_labels_dir, canton_ids_train=canton_ids_train)
testdataset = Dataset(datadir, 0., 'test', True, fold_num, gt_path, num_channel=input_dim, apply_cloud_masking=apply_cm, data_canton_labels_dir=data_canton_labels_dir, canton_ids_train=canton_ids_train)
nclasses = traindataset.n_classes
nclasses_local_1 = traindataset.n_classes_local_1
nclasses_local_2 = traindataset.n_classes_local_2
LOSS_WEIGHT = torch.ones(nclasses)
LOSS_WEIGHT[0] = 0
LOSS_WEIGHT_LOCAL_1 = torch.ones(nclasses_local_1)
LOSS_WEIGHT_LOCAL_1[0] = 0
LOSS_WEIGHT_LOCAL_2 = torch.ones(nclasses_local_2)
LOSS_WEIGHT_LOCAL_2[0] = 0
# Class stage mappping. 3 stages to use
s1_2_s3 = traindataset.l1_2_g
s2_2_s3 = traindataset.l2_2_g
traindataloader = torch.utils.data.DataLoader(traindataset, batch_size=batchsize, shuffle=True, num_workers=workers)
# Define the model
if cell == 'lstm':
network = multistageLSTMSequentialEncoder(24, 24, nstage=stage, nclasses=nclasses,
nclasses_l1=nclasses_local_1, nclasses_l2=nclasses_local_2,
input_dim=input_dim, hidden_dim=hidden, n_layers=layer,
wo_softmax=True)
else:
network = multistageSTARSequentialEncoder(24, 24, nstage=stage, nclasses=nclasses,
nclasses_l1=nclasses_local_1, nclasses_l2=nclasses_local_2,
input_dim=input_dim, hidden_dim=hidden, n_layers=layer, cell=cell,
wo_softmax=True)
network_gt = model_2DConv(nclasses=nclasses, num_classes_l1=nclasses_local_1, num_classes_l2=nclasses_local_2,
s1_2_s3=s1_2_s3, s2_2_s3=s2_2_s3,
wo_softmax=True, dropout=dropout)
model_parameters = filter(lambda p: p.requires_grad, network.parameters())
model_parameters2 = filter(lambda p: p.requires_grad, network_gt.parameters())
params = sum([np.prod(p.size()) for p in model_parameters]) + sum([np.prod(p.size()) for p in model_parameters2])
print('Num params: ', params)
optimizer = torch.optim.Adam(list(network.parameters()) + list(network_gt.parameters()), lr=lr,
weight_decay=weight_decay)
loss = torch.nn.CrossEntropyLoss(weight=LOSS_WEIGHT)
loss_local_1 = torch.nn.CrossEntropyLoss(weight=LOSS_WEIGHT_LOCAL_1)
loss_local_2 = torch.nn.CrossEntropyLoss(weight=LOSS_WEIGHT_LOCAL_2)
if lrS == 1:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1, last_epoch=-1)
elif lrS == 2:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1, last_epoch=-1)
elif lrS == 3:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5, last_epoch=-1)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5, last_epoch=-1)
print('CUDA available: ', torch.cuda.is_available())
if torch.cuda.is_available():
network = torch.nn.DataParallel(network).cuda()
network_gt = torch.nn.DataParallel(network_gt).cuda()
loss = loss.cuda()
loss_local_1 = loss_local_1.cuda()
loss_local_2 = loss_local_2.cuda()
start_epoch = 0
best_test_acc = 0
if snapshot is not None:
checkpoint = torch.load(snapshot)
network.load_state_dict(checkpoint['network_state_dict'])
network_gt.load_state_dict(checkpoint['network_gt_state_dict'])
optimizer.load_state_dict(checkpoint['optimizerA_state_dict'])
step_count = stepCount(init_step=0)
for epoch in range(start_epoch, epochs):
print("\nEpoch {}".format(epoch+1))
train_epoch(traindataloader, network, network_gt, optimizer, loss, loss_local_1, loss_local_2,
lambda_1=lambda_1, lambda_2=lambda_2, lambda_3=lambda_3, lambda_gt=lambda_gt, stage=stage, grad_clip=clip, step_count=step_count)
# call LR scheduler
lr_scheduler.step()
# evaluate model
if epoch > 1 and epoch % 1 == 0:
print("\n Eval on test set") # NOTE default level is level 3 for evaluate_fieldwise.
test_acc = evaluate_fieldwise(network, network_gt, testdataset, batchsize=batchsize, prediction_dir=prediction_dir, experiment_id=experiment_id)
wandb.log({"val_epoch/val_accuracy": test_acc}, step = step_count.step-1)
if checkpoint_dir is not None:
checkpoint_name = os.path.join(checkpoint_dir, name + '_epoch_' + str(epoch) + "_model.pth")
if test_acc > best_test_acc:
print('Model saved! Best val acc:', test_acc)
best_test_acc = test_acc
torch.save({'network_state_dict': network.state_dict(),
'network_gt_state_dict': network_gt.state_dict(),
'optimizerA_state_dict': optimizer.state_dict()}, checkpoint_name)
wandb.summary["best val acc"] = test_acc
wandb.summary["best epoch"] = epoch
def train_epoch(dataloader, network, network_gt, optimizer, loss, loss_local_1, loss_local_2, lambda_1,
lambda_2, lambda_3, lambda_gt, stage, grad_clip, step_count):
network.train()
network_gt.train()
mean_loss_glob = 0.
mean_loss_local_1 = 0.
mean_loss_local_2 = 0.
mean_loss_gt = 0.
mean_loss_total = 0.
for iteration, data in enumerate(dataloader):
optimizer.zero_grad()
input, target_glob, target_local_1, target_local_2 = data
if torch.cuda.is_available():
input = input.cuda()
target_glob = target_glob.cuda()
target_local_1 = target_local_1.cuda()
target_local_2 = target_local_2.cuda()
output_glob, output_local_1, output_local_2 = network.forward(input)
# NOTE no mask is passed and no loss is masked. the masking is supposed to be done before the training
l_glob = loss(output_glob, target_glob)
l_local_1 = loss_local_1(output_local_1, target_local_1)
l_local_2 = loss_local_2(output_local_2, target_local_2)
# TODO verify the lambda here, if it is same as the paper.
if stage == 3 or stage == 1:
total_loss = lambda_3 * l_glob + lambda_1 * l_local_1 + lambda_2 * l_local_2
elif stage == 2:
total_loss = l_glob + lambda_2 * l_local_2
else:
total_loss = l_glob
mean_loss_glob += l_glob.data.cpu().numpy()
mean_loss_local_1 += l_local_1.data.cpu().numpy()
mean_loss_local_2 += l_local_2.data.cpu().numpy()
# Refinement -------------------------------------------------
output_glob_R = network_gt([output_local_1, output_local_2, output_glob])
l_gt = loss(output_glob_R, target_glob)
mean_loss_gt += l_gt.data.cpu().numpy()
# TODO log the loss in wandb during training.
total_loss = total_loss + lambda_gt * l_gt
total_loss.backward()
torch.nn.utils.clip_grad_norm_(network.parameters(), grad_clip)
torch.nn.utils.clip_grad_norm_(network_gt.parameters(), grad_clip)
optimizer.step()
mean_loss_total += total_loss.data.cpu().numpy()
metrics_per_step = {"train_step/total_loss": total_loss,
"train_step/local_loss_1": l_local_1,
"train_step/local_loss_2": l_local_2,
"train_step/global_loss": l_glob,
"train_step/global_loss_refined": l_gt}
wandb.log(metrics_per_step, step=step_count.step)
print("step:", step_count.step, "total_loss: %.4f"%(total_loss.data.cpu().numpy()))
step_count.count()
mean_loss_local_1 /= (iteration+1)
mean_loss_local_2 /= (iteration+1)
mean_loss_glob /= (iteration+1)
mean_loss_gt /= (iteration+1)
mean_loss_total /= (iteration+1)
print('Local Loss 1: %.4f' % (mean_loss_local_1 / iteration))
print('Local Loss 2: %.4f' % (mean_loss_local_2 / iteration))
print('Global Loss: %.4f' % (mean_loss_glob / iteration))
print('Global Loss - Refined: %.4f' % (mean_loss_gt / iteration))
metrics_per_epoch = {"train_epoch/total_loss": mean_loss_total,
"train_epoch/local_loss_1": mean_loss_local_1,
"train_epoch/local_loss_2": mean_loss_local_2,
"train_epoch/global_loss": mean_loss_glob,
"train_epoch/global_loss_refined": mean_loss_gt}
wandb.log(metrics_per_epoch, step = step_count.step-1)
if __name__ == "__main__":
args = parse_args()
print(args)
history_step = 0
model_name = str(args.name) + '_' + str(args.cell) + '_' + str(args.input_dim) + '_' + str(args.batchsize) + '_' + str(
args.learning_rate) + '_' + str(args.layer) + '_' + str(args.hidden) + '_' + str(args.lrSC) + '_' + str(
args.lambda_1) + '_' + str(args.lambda_2) + '_' + str(args.weight_decay) + '_' + str(args.fold) + '_' + str(
args.gt_path) + '_' + str(args.seed)
print(model_name)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
wandb.init(
project='ms_convSTAR_CH_2021',
entity='yihshe',
name=f'experiment_{args.experiment_id}',
config=args
)
main(
datadir=args.data,
data_canton_labels_dir=args.data_canton_labels,
canton_ids_train=args.canton_ids_train,
batchsize=args.batchsize,
workers=args.workers,
epochs=args.epochs,
lr=args.learning_rate,
snapshot=args.snapshot,
checkpoint_dir=args.checkpoint_dir,
experiment_id = args.experiment_id,
prediction_dir = args.prediction_dir,
weight_decay=args.weight_decay,
name=model_name,
layer=args.layer,
hidden=args.hidden,
lrS=args.lrSC,
lambda_1=args.lambda_1,
lambda_2=args.lambda_2,
lambda_3=args.lambda_3,
lambda_gt=args.lambda_gt,
stage=args.stage,
clip=args.clip,
fold_num=args.fold,
gt_path=args.gt_path,
cell=args.cell,
dropout=args.dropout,
input_dim=args.input_dim,
apply_cm = args.apply_cm
)
wandb.finish()