-
Notifications
You must be signed in to change notification settings - Fork 180
/
Copy pathdataset.py
55 lines (43 loc) · 1.75 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""This module provides the functions to build a TensorFlow dataset."""
import tensorflow as tf
def _parse(example):
"""Extract data from a `tf.Example` protocol buffer.
Args:
example: a protobuf example.
Returns:
a parsed data and label pair.
"""
# Defaults are not specified since both keys are required.
keys_to_features = {
'image/filename': tf.io.FixedLenFeature([], tf.string),
'image/encoded': tf.io.FixedLenFeature([], tf.string),
'label/marks': tf.io.FixedLenFeature([], tf.string),
}
parsed_features = tf.io.parse_single_example(example, keys_to_features)
# Extract features from single example
image_decoded = tf.image.decode_image(parsed_features['image/encoded'])
image_float = tf.cast(image_decoded, tf.float32)
points = tf.io.parse_tensor(parsed_features['label/marks'], tf.float64)
points = tf.reshape(points, [-1])
points = tf.cast(points, tf.float32)
return image_float, points
def get_parsed_dataset(record_file, batch_size, shuffle=True):
"""Return a parsed dataset for model.
Args:
record_file: the TFRecord file.
batch_size: batch size.
shuffle: whether to shuffle the data.
Returns:
a parsed dataset.
"""
# Init the dataset from the TFRecord file.
dataset = tf.data.TFRecordDataset(record_file)
# Use `Dataset.map()` to build a pair of a feature dictionary and a label
# tensor for each example.
AUTOTUNE = tf.data.experimental.AUTOTUNE
if shuffle is True:
dataset = dataset.shuffle(buffer_size=4096)
dataset = dataset.map(_parse, num_parallel_calls=AUTOTUNE)
dataset = dataset.batch(batch_size)
dataset = dataset.prefetch(buffer_size=AUTOTUNE)
return dataset