-
-
Notifications
You must be signed in to change notification settings - Fork 288
/
face_detection.py
311 lines (251 loc) · 10.7 KB
/
face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""This module provides a face detection implementation backed by SCRFD.
https://github.com/deepinsight/insightface/tree/master/detection/scrfd
"""
import os
import cv2
import numpy as np
import onnxruntime
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = x1.clamp(min=0, max=max_shape[1])
y1 = y1.clamp(min=0, max=max_shape[0])
x2 = x2.clamp(min=0, max=max_shape[1])
y2 = y2.clamp(min=0, max=max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def distance2kps(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (n, 2), [x, y].
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom).
max_shape (tuple): Shape of the image.
Returns:
Tensor: Decoded bboxes.
"""
preds = []
for i in range(0, distance.shape[1], 2):
px = points[:, i % 2] + distance[:, i]
py = points[:, i % 2 + 1] + distance[:, i + 1]
if max_shape is not None:
px = px.clamp(min=0, max=max_shape[1])
py = py.clamp(min=0, max=max_shape[0])
preds.append(px)
preds.append(py)
return np.stack(preds, axis=-1)
class FaceDetector:
def __init__(self, model_file):
"""Initialize a face detector.
Args:
model_file (str): ONNX model file path.
"""
assert os.path.exists(model_file), f"File not found: {model_file}"
self.center_cache = {}
self.nms_threshold = 0.4
self.session = onnxruntime.InferenceSession(
model_file, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
# Get model configurations from the model file.
# What is the input like?
input_cfg = self.session.get_inputs()[0]
input_name = input_cfg.name
input_shape = input_cfg.shape
self.input_size = tuple(input_shape[2:4][::-1])
# How about the outputs?
outputs = self.session.get_outputs()
output_names = []
for o in outputs:
output_names.append(o.name)
self.input_name = input_name
self.output_names = output_names
# And any key points?
self._with_kps = False
self._anchor_ratio = 1.0
self._num_anchors = 1
if len(outputs) == 6:
self._offset = 3
self._strides = [8, 16, 32]
self._num_anchors = 2
elif len(outputs) == 9:
self._offset = 3
self._strides = [8, 16, 32]
self._num_anchors = 2
self._with_kps = True
elif len(outputs) == 10:
self._offset = 5
self._strides = [8, 16, 32, 64, 128]
self._num_anchors = 1
elif len(outputs) == 15:
self._offset = 5
self._strides = [8, 16, 32, 64, 128]
self._num_anchors = 1
self._with_kps = True
def _preprocess(self, image):
inputs = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32)
inputs = inputs - np.array([127.5, 127.5, 127.5])
inputs = inputs / 128
inputs = np.expand_dims(inputs, axis=0)
inputs = np.transpose(inputs, [0, 3, 1, 2])
return inputs.astype(np.float32)
def forward(self, img, threshold):
scores_list = []
bboxes_list = []
kpss_list = []
inputs = self._preprocess(img)
predictions = self.session.run(
self.output_names, {self.input_name: inputs})
input_height = inputs.shape[2]
input_width = inputs.shape[3]
offset = self._offset
for idx, stride in enumerate(self._strides):
scores_pred = predictions[idx]
bbox_preds = predictions[idx + offset] * stride
if self._with_kps:
kps_preds = predictions[idx + offset * 2] * stride
# Generate the anchors.
height = input_height // stride
width = input_width // stride
key = (height, width, stride)
if key in self.center_cache:
anchor_centers = self.center_cache[key]
else:
# solution-3:
anchor_centers = np.stack(
np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32)
anchor_centers = (anchor_centers * stride).reshape((-1, 2))
if self._num_anchors > 1:
anchor_centers = np.stack(
[anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2))
if len(self.center_cache) < 100:
self.center_cache[key] = anchor_centers
# solution-1, c style:
# anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 )
# for i in range(height):
# anchor_centers[i, :, 1] = i
# for i in range(width):
# anchor_centers[:, i, 0] = i
# solution-2:
# ax = np.arange(width, dtype=np.float32)
# ay = np.arange(height, dtype=np.float32)
# xv, yv = np.meshgrid(np.arange(width), np.arange(height))
# anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32)
# Filter the results by scores and threshold.
pos_inds = np.where(scores_pred >= threshold)[0]
bboxes = distance2bbox(anchor_centers, bbox_preds)
pos_scores = scores_pred[pos_inds]
pos_bboxes = bboxes[pos_inds]
scores_list.append(pos_scores)
bboxes_list.append(pos_bboxes)
if self._with_kps:
kpss = distance2kps(anchor_centers, kps_preds)
kpss = kpss.reshape((kpss.shape[0], -1, 2))
pos_kpss = kpss[pos_inds]
kpss_list.append(pos_kpss)
return scores_list, bboxes_list, kpss_list
def _nms(self, detections):
"""None max suppression."""
x1 = detections[:, 0]
y1 = detections[:, 1]
x2 = detections[:, 2]
y2 = detections[:, 3]
scores = detections[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
_x1 = np.maximum(x1[i], x1[order[1:]])
_y1 = np.maximum(y1[i], y1[order[1:]])
_x2 = np.minimum(x2[i], x2[order[1:]])
_y2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, _x2 - _x1 + 1)
h = np.maximum(0.0, _y2 - _y1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= self.nms_threshold)[0]
order = order[inds + 1]
return keep
def detect(self, img, threshold=0.5, input_size=None, max_num=0, metric='default'):
input_size = self.input_size if input_size is None else input_size
# Rescale the image?
img_height, img_width, _ = img.shape
ratio_img = float(img_height) / img_width
input_width, input_height = input_size
ratio_model = float(input_height) / input_width
if ratio_img > ratio_model:
new_height = input_height
new_width = int(new_height / ratio_img)
else:
new_width = input_width
new_height = int(new_width * ratio_img)
det_scale = float(new_height) / img_height
resized_img = cv2.resize(img, (new_width, new_height))
det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8)
det_img[:new_height, :new_width, :] = resized_img
scores_list, bboxes_list, kpss_list = self.forward(det_img, threshold)
scores = np.vstack(scores_list)
scores_ravel = scores.ravel()
order = scores_ravel.argsort()[::-1]
bboxes = np.vstack(bboxes_list) / det_scale
if self._with_kps:
kpss = np.vstack(kpss_list) / det_scale
pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False)
pre_det = pre_det[order, :]
keep = self._nms(pre_det)
det = pre_det[keep, :]
if self._with_kps:
kpss = kpss[order, :, :]
kpss = kpss[keep, :, :]
else:
kpss = None
if max_num > 0 and det.shape[0] > max_num:
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
img_center = img.shape[0] // 2, img.shape[1] // 2
offsets = np.vstack([
(det[:, 0] + det[:, 2]) / 2 - img_center[1],
(det[:, 1] + det[:, 3]) / 2 - img_center[0]])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
if metric == 'max':
values = area
else:
# some extra weight on the centering
values = area - offset_dist_squared * 2.0
# some extra weight on the centering
bindex = np.argsort(values)[::-1]
bindex = bindex[0:max_num]
det = det[bindex, :]
if kpss is not None:
kpss = kpss[bindex, :]
return det, kpss
def visualize(self, image, results, box_color=(0, 255, 0), text_color=(0, 0, 0)):
"""Visualize the detection results.
Args:
image (np.ndarray): image to draw marks on.
results (np.ndarray): face detection results.
box_color (tuple, optional): color of the face box. Defaults to (0, 255, 0).
text_color (tuple, optional): color of the face marks (5 points). Defaults to (0, 0, 255).
"""
for det in results:
bbox = det[0:4].astype(np.int32)
conf = det[-1]
cv2.rectangle(image, (bbox[0], bbox[1]),
(bbox[2], bbox[3]), box_color)
label = f"face: {conf:.2f}"
label_size, base_line = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
cv2.rectangle(image, (bbox[0], bbox[1] - label_size[1]),
(bbox[2], bbox[1] + base_line), box_color, cv2.FILLED)
cv2.putText(image, label, (bbox[0], bbox[1]),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color)