Skip to content

Latest commit

 

History

History

ONNXRuntime

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

YOLO ONNXRuntime

Convert Your Model to ONNX

First, you should move to by:

cd <RT-ODLab>
cd tools/

Then, you can:

  1. Convert a standard YOLO model by:
python3 export_onnx.py -m yolov1 --weight ../weight/coco/yolov1/yolov1_coco.pth -nc 80 --img_size 640

Notes:

  • -n: specify a model name. The model name must be one of the [yolox-s,m,l,x and yolox-nano, yolox-tiny, yolov3]

  • -c: the model you have trained

  • -o: opset version, default 11. However, if you will further convert your onnx model to OpenVINO, please specify the opset version to 10.

  • --no-onnxsim: disable onnxsim

  • To customize an input shape for onnx model, modify the following code in tools/export_onnx.py:

    dummy_input = torch.randn(args.batch_size, 3, args.img_size, args.img_size)

ONNXRuntime Demo

Step1.

cd <YOLOX_HOME>/deployment/ONNXRuntime

Step2.

python3 onnx_inference.py --model ../../weights/onnx/11/yolov1.onnx -i ../test_image.jpg -s 0.3 --img_size 640

Notes:

  • --model: your converted onnx model
  • -i: input_image
  • -s: score threshold for visualization.
  • --img_size: should be consistent with the shape you used for onnx convertion.