-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_first.py
448 lines (355 loc) · 18.1 KB
/
train_first.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
from torch.utils.tensorboard import SummaryWriter
import os
import os.path as osp
import re
import sys
import yaml
import shutil
import numpy as np
import torch
import click
import warnings
warnings.simplefilter('ignore')
# load packages
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from models import *
from meldataset import build_dataloader
from utils import *
from optimizers import build_optimizer
import time
# simple fix for dataparallel that allows access to class attributes
class MyDataParallel(torch.nn.DataParallel):
def __getattr__(self, name):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.module, name)
import logging
from logging import StreamHandler
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = StreamHandler()
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
@click.command()
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)
def main(config_path):
config = yaml.safe_load(open(config_path))
log_dir = config['log_dir']
if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
writer = SummaryWriter(log_dir + "/tensorboard")
# write logs
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
logger.addHandler(file_handler)
batch_size = config.get('batch_size', 10)
device = config.get('device', 'cpu')
epochs = config.get('epochs_1st', 200)
save_freq = config.get('save_freq', 2)
train_path = config.get('train_data', None)
val_path = config.get('val_data', None)
multigpu = config.get('multigpu', False)
log_interval = config.get('log_interval', 10)
saving_epoch = config.get('save_freq', 2)
# load data
train_list, val_list = get_data_path_list(train_path, val_path)
train_dataloader = build_dataloader(train_list,
batch_size=batch_size,
num_workers=8,
dataset_config={},
device=device)
val_dataloader = build_dataloader(val_list,
batch_size=batch_size,
validation=True,
num_workers=2,
device=device,
dataset_config={})
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
scheduler_params = {
"max_lr": float(config['optimizer_params'].get('lr', 1e-4)),
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
"epochs": epochs,
"steps_per_epoch": len(train_dataloader),
}
model = build_model(Munch(config['model_params']), text_aligner, pitch_extractor)
_ = [model[key].to(device) for key in model]
optimizer = build_optimizer({key: model[key].parameters() for key in model},
scheduler_params_dict= {key: scheduler_params.copy() for key in model})
# multi-GPU support
if multigpu:
for key in model:
model[key] = MyDataParallel(model[key])
if config.get('pretrained_model', '') != '':
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
load_only_params=config.get('load_only_params', True))
else:
start_epoch = 0
iters = 0
best_loss = float('inf') # best test loss
loss_train_record = list([])
loss_test_record = list([])
loss_params = Munch(config['loss_params'])
TMA_epoch = loss_params.TMA_epoch
TMA_CEloss = loss_params.TMA_CEloss
VC_epoch = loss_params.VC_epoch
if VC_epoch < 0:
VC_epoch = epochs + VC_epoch
for epoch in range(start_epoch, epochs):
running_loss = 0
start_time = time.time()
criterion = nn.L1Loss()
_ = [model[key].train() for key in model]
for i, batch in enumerate(train_dataloader):
batch = [b.to(device) for b in batch]
texts, input_lengths, mels, mel_input_length, labels, ref_mels, ref_labels = batch
mask = length_to_mask(mel_input_length // (2 ** model.text_aligner.n_down)).to('cuda')
m = length_to_mask(input_lengths)
text_mask = length_to_mask(input_lengths).to(texts.device)
ppgs, s2s_pred, s2s_attn_feat = model.text_aligner(mels, mask, texts)
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2)
s2s_attn_feat = s2s_attn_feat[..., 1:]
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2)
with torch.no_grad():
text_mask = length_to_mask(input_lengths).to(texts.device)
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
attn_mask = (attn_mask < 1)
s2s_attn_feat.masked_fill_(attn_mask, -float("inf"))
if TMA_CEloss:
s2s_attn = F.softmax(s2s_attn_feat, dim=1) # along the mel dimension
else:
s2s_attn = F.softmax(s2s_attn_feat, dim=-1) # along the text dimension
# get monotonic version
with torch.no_grad():
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** model.text_aligner.n_down))
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
s2s_attn = torch.nan_to_num(s2s_attn)
# encode
t_en = model.text_encoder(texts, input_lengths, m)
# 50% of chance of using monotonic version
if bool(random.getrandbits(1)):
asr = (t_en @ s2s_attn)
else:
asr = (t_en @ s2s_attn_mono)
# get clips
mel_len = int(mel_input_length.min().item() / 2 - 1)
en = []
gt = []
for bib in range(len(mel_input_length)):
mel_length = int(mel_input_length[bib].item() / 2)
random_start = np.random.randint(0, mel_length - mel_len)
en.append(asr[bib, :, random_start:random_start+mel_len])
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
mask = length_to_mask(torch.LongTensor([mel_len] * batch_size)).to('cuda')
en = torch.stack(en)
gt = torch.stack(gt).detach()
# clip too short to be used by the style encoder
if gt.shape[-1] < 80:
continue
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach()
F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
s = model.style_encoder(gt.unsqueeze(1))
mel_rec = model.decoder(en, F0_real, real_norm, s)
s_trg = model.style_encoder(ref_mels.unsqueeze(1))
mel_fake = model.decoder(en,
F0_real,
real_norm,
s_trg)
# discriminator loss
optimizer.zero_grad()
gt.requires_grad_()
out, _ = model.discriminator(gt.unsqueeze(1), labels)
loss_real = adv_loss(out, 1)
loss_reg = r1_reg(out, gt)
out, _ = model.discriminator(mel_rec.detach().unsqueeze(1), labels)
loss_fake = adv_loss(out, 0)
d_loss = loss_real + loss_fake + loss_reg * loss_params.lambda_reg
d_loss.backward()
optimizer.step('discriminator')
# generator loss
optimizer.zero_grad()
loss_mel = criterion(mel_rec, gt)
if epoch > TMA_epoch and epoch < VC_epoch: # start TMA training
loss_s2s = 0
for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
loss_s2s /= texts.size(0)
if TMA_CEloss:
# cross entropy loss for monotonic alignment
log_attn = torch.nan_to_num(F.log_softmax(s2s_attn_feat, dim=1)) # along the mel dimension
loss_mono = -(torch.mul(log_attn, s2s_attn_mono).sum(axis=[-1, -2]) / input_lengths).mean()
else:
# L1 loss for monotonic alignment
loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
else:
loss_s2s = 0
loss_mono = 0
# adversarial loss
with torch.no_grad():
_, f_real = model.discriminator(gt.unsqueeze(1), labels)
out_rec, f_fake = model.discriminator(mel_rec.unsqueeze(1), labels) # reconstructed sample
loss_adv = adv_loss(out_rec, 1)
# feature matching loss
loss_fm = 0
for m in range(len(f_real)):
for k in range(len(f_real[m])):
loss_fm += torch.mean(torch.abs(f_real[m][k] - f_fake[m][k]))
# style loss
s_pred = model.style_encoder(mel_fake.unsqueeze(1))
loss_sty = torch.mean(torch.abs(s_pred - s_trg))
# norm and F0 loss
if epoch >= VC_epoch: # start VC training (for norm and F0 matching loss)
# norm loss
fake_norm = log_norm(mel_fake.unsqueeze(1)).squeeze(1)
loss_norm = ((torch.nn.ReLU()(torch.abs(fake_norm - real_norm) - 0.5))**2).mean()
# F0 loss
F0_fake, _, _ = model.pitch_extractor(mel_fake.unsqueeze(1))
loss_f0 = f0_loss(F0_fake, F0_real)
# ASR loss
asr_real = model.text_aligner.get_feature(gt)
asr_fake = model.text_aligner.get_feature(mel_fake)
loss_asr = torch.mean(torch.abs(asr_real - asr_fake))
loss_feat = loss_norm + loss_f0 + loss_asr
mel_cyc = model.decoder(en, F0_fake, fake_norm, s)
loss_cyc = criterion(mel_cyc, gt)
else:
loss_feat = 0
loss_cyc = 0
g_loss = loss_params.lambda_mel * loss_mel + \
loss_params.lambda_adv * loss_adv + \
loss_params.lambda_fm * loss_fm + \
loss_params.lambda_mono * loss_mono + \
loss_params.lambda_s2s * loss_s2s + \
loss_params.lambda_sty * loss_sty + \
loss_params.lambda_feat * loss_feat + \
loss_params.lambda_cyc * loss_cyc
running_loss += loss_mel.item()
g_loss.backward()
optimizer.step('text_encoder')
optimizer.step('style_encoder')
optimizer.step('decoder')
# freeze text aligner and pitch extractor for VC training for simplicity
if epoch > TMA_epoch and epoch < VC_epoch:
optimizer.step('text_aligner')
optimizer.step('pitch_extractor')
iters = iters + 1
if (i+1)%log_interval == 0:
logger.info ('Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Adv Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, Style Loss: %.5f, Feat Loss: %.5f, Cycle Loss: %.5f'
%(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, loss_adv.item(), d_loss.item(), loss_mono, loss_s2s, loss_sty, loss_feat, loss_cyc))
writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
writer.add_scalar('train/adv_loss', loss_adv.item(), iters)
writer.add_scalar('train/d_loss', d_loss.item(), iters)
writer.add_scalar('train/mono_loss', loss_mono, iters)
writer.add_scalar('train/s2s_loss', loss_s2s, iters)
writer.add_scalar('train/style_loss', loss_sty, iters)
writer.add_scalar('train/cycle_loss', loss_cyc, iters)
writer.add_scalar('train/feat_loss', loss_feat, iters)
running_loss = 0
print('Time elasped:', time.time()-start_time)
loss_test = 0
_ = [model[key].eval() for key in model]
with torch.no_grad():
iters_test = 0
for batch_idx, batch in enumerate(val_dataloader):
optimizer.zero_grad()
batch = [b.to(device) for b in batch]
texts, input_lengths, mels, mel_input_length, labels, ref_mels, ref_labels = batch
with torch.no_grad():
mask = length_to_mask(mel_input_length // (2 ** model.text_aligner.n_down)).to('cuda')
m = length_to_mask(input_lengths)
ppgs, s2s_pred, s2s_attn_feat = model.text_aligner(mels, mask, texts)
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2)
s2s_attn_feat = s2s_attn_feat[..., 1:]
s2s_attn_feat = s2s_attn_feat.transpose(-1, -2)
with torch.no_grad():
text_mask = length_to_mask(input_lengths).to(texts.device)
attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
attn_mask = (attn_mask < 1)
s2s_attn_feat.masked_fill_(attn_mask, -float("inf"))
if TMA_CEloss:
s2s_attn = F.softmax(s2s_attn_feat, dim=1) # along the mel dimension
else:
s2s_attn = F.softmax(s2s_attn_feat, dim=-1) # along the text dimension
# get monotonic version
with torch.no_grad():
mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** model.text_aligner.n_down))
s2s_attn_mono = maximum_path(s2s_attn, mask_ST)
s2s_attn = torch.nan_to_num(s2s_attn)
# encode
t_en = model.text_encoder(texts, input_lengths, m)
asr = (t_en @ s2s_attn_mono)
# get clips
mel_len = int(mel_input_length.min().item() / 2 - 1)
en = []
gt = []
for bib in range(len(mel_input_length)):
mel_length = int(mel_input_length[bib].item() / 2)
random_start = np.random.randint(0, mel_length - mel_len)
en.append(asr[bib, :, random_start:random_start+mel_len])
gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
en = torch.stack(en)
gt = torch.stack(gt).detach()
with torch.no_grad():
F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
F0 = F0.reshape(F0.shape[0], F0.shape[1] * 2, F0.shape[2], 1).squeeze()
# conversion
s = model.style_encoder(gt.unsqueeze(1))
s_trg = model.style_encoder(ref_mels.unsqueeze(1))
real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
mel_fake = model.decoder(en, F0_real, real_norm, s_trg)
fake_norm = log_norm(mel_fake.unsqueeze(1)).squeeze(1).detach()
F0_fake, _, _ = model.pitch_extractor(mel_fake.unsqueeze(1))
mel_cyc = model.decoder(en, F0_fake, fake_norm, s)
loss_cyc = criterion(mel_cyc, gt)
loss_test += loss_cyc
iters_test += 1
print('Epochs:', epoch + 1)
logger.info('Validation cycle loss: %.3f' % (loss_test / iters_test))
print('\n\n\n')
writer.add_scalar('eval/cycle_loss', loss_test / iters_test, epoch + 1)
attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze())
writer.add_figure('eval/attn', attn_image, epoch)
mel_image = get_image(mel_cyc[0].cpu().numpy().squeeze())
writer.add_figure('eval/mel_rec', mel_image, epoch)
if epoch % saving_epoch == 0:
if (loss_test / iters_test) < best_loss:
best_loss = loss_test / iters_test
print('Saving..')
state = {
'net': {key: model[key].state_dict() for key in model},
'optimizer': optimizer.state_dict(),
'iters': iters,
'val_loss': loss_test / iters_test,
'epoch': epoch,
}
save_path = osp.join(log_dir, 'epoch_1st_%05d.pth' % epoch)
torch.save(state, save_path)
print('Saving..')
state = {
'net': {key: model[key].state_dict() for key in model},
'optimizer': optimizer.state_dict(),
'iters': iters,
'val_loss': loss_test / iters_test,
'epoch': epoch,
}
save_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
torch.save(state, save_path)
if __name__=="__main__":
main()