-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsimple_model.py
406 lines (346 loc) · 17.3 KB
/
simple_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import tensorflow as tf
import numpy as np
import random
def clip_gradient_norms(gradients, max_norm):
clipped_gradients = []
for grad in gradients:
if grad is not None:
if isinstance(grad, tf.IndexedSlices):
tmp = tf.clip_by_norm(grad.values, max_norm)
grad = tf.IndexedSlices(tmp, grad.indices, grad.dense_shape)
else:
grad = tf.clip_by_norm(grad, max_norm)
clipped_gradients.append(grad)
return clipped_gradients
class SimpleModel(object):
def __init__(self, args):
self.args = args
if args.random_random:
tf.set_random_seed(random.randint(2, 1000))
else:
tf.set_random_seed(args.random_seed)
self.max_input_length = args.input_length
self.max_output_length = args.output_length
def get_optimizer(self, scope=None):
if self.args.decay_steps <= 0:
learning_rate = self.args.learning_rate
else:
global_step = tf.Variable(0, trainable=False)
starter_learning_rate = self.args.learning_rate
decay_steps = self.args.decay_steps
decay_base = 0.96
learning_rate = tf.train.exponential_decay(
starter_learning_rate,
global_step,
decay_steps,
decay_base,
staircase=True)
if self.args.max_gradient_norm < 0:
if self.args.decay_steps <= 0:
self.optimizer = tf.train.AdamOptimizer(
learning_rate).minimize(self.loss)
else:
self.optimizer = tf.train.AdamOptimizer(
learning_rate).minimize(self.loss, global_step=global_step)
else:
optimizer = tf.train.AdamOptimizer(learning_rate)
params = tf.trainable_variables(scope)
gradients = tf.gradients(self.loss, params)
if self.args.clip_by_norm:
clipped_gradients = clip_gradient_norms(gradients, self.args.max_gradient_norm)
else:
clipped_gradients, _ = tf.clip_by_global_norm(
gradients, self.args.max_gradient_norm)
if self.args.decay_steps <= 0:
optimizer_op = optimizer.apply_gradients(
zip(clipped_gradients, params))
else:
optimizer_op = optimizer.apply_gradients(
zip(clipped_gradients, params), global_step=global_step)
return optimizer, optimizer_op
def initialize(self, voc_size, act_size):
self.V = voc_size
self.U = act_size
self.regularization_list = []
self.create_model()
optimizer, self.optimizer_op = self.get_optimizer()
self.reset_optimizer_op = tf.variables_initializer(optimizer.variables())
init = tf.global_variables_initializer()
self.sess = tf.Session()
tf.summary.FileWriter('logs/' + self.args.experiment_id + '/model',
self.sess.graph)
self.sess.run(init)
def ff(self, x, layers, hidden, out, use_bias=True):
for i in range(layers):
if i == layers - 1:
activation = None
nodes = out
else:
activation = tf.nn.relu
nodes = hidden
x = tf.layers.dense(x, nodes, activation=activation, use_bias=use_bias)
return x
def noise_regularization(self, rep, noise_weight, reg_coe):
if reg_coe > 0:
if self.args.use_l1_norm:
norm = tf.reduce_mean(tf.abs(rep), -1)
else:
norm = tf.reduce_mean(rep ** 2, -1)
masked_norm = norm * self.input_mask_float
if self.args.sample_wise_content_noise:
noise_reg = tf.reduce_sum(masked_norm / tf.to_float(self.batch_size))
else:
norm_sum = tf.reduce_sum(masked_norm, -1)
noise_reg_sample = norm_sum / tf.to_float(self.x_len)
noise_reg = tf.reduce_mean(noise_reg_sample)
self.regularization_list.append(reg_coe * noise_reg)
noisy_rep = rep + noise_weight * tf.random_normal(tf.shape(rep))
return noisy_rep, rep
def attention_generation(self, x):
"""
Generate attention on input sequences for each output node.
:param x: function sequence Tensor (?, input_len, voc_size)
:return: Tensor (?, output_len, input_len)
"""
function_concat = tf.reshape(
x, [-1, self.max_input_length * self.V], name='function_concat')
with tf.variable_scope("attention_network"):
score_stack = self.ff(function_concat, 1, 32,
self.max_output_length * self.max_input_length)
score = tf.reshape(score_stack,
[-1, self.max_output_length, self.max_input_length],
name='score')
with tf.variable_scope("attention_softmax"):
attention = tf.nn.softmax(score, dim=-1, name='attention')
return attention
def get_representations(self):
x_one_hot = tf.one_hot(self.x, self.V, name='x_one_hot')
# compute switch
with tf.variable_scope("compute_switch"):
switch_score = self.ff(x_one_hot, 1, 32, 1)
self.switch = tf.nn.sigmoid(
switch_score / self.args.switch_temperature)
if self.args.remove_switch:
primitive = x_one_hot
function = x_one_hot
else:
if self.args.relu_switch:
switch_primitive = tf.nn.relu(2 * self.switch - 1)
switch_function = tf.nn.relu(1 - 2 * self.switch)
else:
switch_primitive = self.switch
switch_function = 1 - self.switch
primitive = tf.multiply(switch_primitive, x_one_hot, name='primitive')
function = tf.multiply(switch_function, x_one_hot, name='function')
# embedding
if self.args.use_embedding:
embedding_size = self.args.embedding_size
primitive = tf.layers.dense(primitive, embedding_size)
function = tf.layers.dense(function, embedding_size)
return primitive, function
def create_model(self):
self.x = tf.placeholder(tf.int64, shape=(None, self.max_input_length,), name='x')
self.y = tf.placeholder(tf.int64, shape=(None, self.max_output_length,), name='y')
self.x_len = tf.placeholder(tf.int32, shape=(None,), name='x_len')
self.y_len = tf.placeholder(tf.int32, shape=(None,), name='y_len')
self.noise_weight = tf.placeholder(tf.float32, shape=(), name='noise_weight')
self.batch_size = tf.shape(self.x_len)
# masks
self.target_mask_float = tf.sequence_mask(
self.y_len, maxlen=self.max_output_length, dtype=tf.float32)
self.target_mask_int64 = tf.sequence_mask(
self.y_len, maxlen=self.max_output_length, dtype=tf.int64)
self.input_mask_float = tf.sequence_mask(
self.x_len, maxlen=self.max_input_length, dtype=tf.float32)
with tf.variable_scope("word_embeddings"):
primitive, function = self.get_representations()
if self.args.single_representation:
function = primitive
with tf.variable_scope("noise_regularization"):
if self.args.content_noise:
primitive, _ = self.noise_regularization(
primitive, self.noise_weight, self.args.content_noise_coe)
if self.args.function_noise:
function, _ = self.noise_regularization(
function, self.noise_weight, self.args.content_noise_coe)
with tf.variable_scope("generate_attention"):
self.attention = self.attention_generation(function)
with tf.variable_scope("prediction"):
h = tf.matmul(self.attention, primitive)
with tf.variable_scope("prediction_network"):
l = self.ff(h, 1, 32, self.U, use_bias=(not self.args.remove_prediction_bias))
with tf.variable_scope("evaluation"):
# loss
loss_sum = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.y, logits=l)
self.loss = tf.reduce_sum(loss_sum * self.target_mask_float / tf.to_float(self.batch_size))
# switch regularization
if self.args.reg_coe > 0:
if self.args.use_entropy_reg:
entropy = -(self.switch * tf.log(self.switch) + (
1 - self.switch) * tf.log(1 - self.switch))
else:
entropy = self.switch * (1 - self.switch)
ent = tf.squeeze(entropy, axis=-1)
reg = tf.reduce_sum(ent * self.input_mask_float / tf.to_float(self.batch_size))
self.loss += self.args.reg_coe * reg
if self.args.macro_switch_reg_coe > 0:
ss = tf.squeeze(self.switch, axis=-1) - 0.5
ss_value = tf.reduce_sum(ss * self.input_mask_float, -1) / tf.to_float(self.x_len)
ss_reg = tf.reduce_mean(ss_value ** 2)
self.loss += self.args.macro_switch_reg_coe * ss_reg
for reg in self.regularization_list:
self.loss += reg
# word accuracy
self.prediction = tf.argmax(l, -1) * self.target_mask_int64
word_equality = tf.to_float(tf.equal(self.y, self.prediction))
valid_word_equality = word_equality * self.target_mask_float
self.word_accuracy = tf.reduce_mean(tf.reduce_sum(
valid_word_equality, -1) / (tf.to_float(self.y_len)))
# sentence accuracy
sent_equality = tf.reduce_min(word_equality, axis=-1)
self.sent_accuracy = tf.reduce_mean(sent_equality)
def select(self, sample_list, batch_size, start):
length = len(sample_list[0])
end = min(start + batch_size, length)
batch = [samples[start:end] for samples in sample_list]
return batch, end % length
def random_select(self, sample_list, batch_size, start):
length = len(sample_list[0])
indice = np.random.choice(length, size=batch_size)
result = [[samples[i] for i in indice] for samples in sample_list]
return result, start
def train(self, X, Y, X_len, Y_len):
log_step = 100
optimizer_op = self.optimizer_op
fetch = [optimizer_op, self.loss, self.word_accuracy,
self.sent_accuracy]
start = 0
avg_loss, avg_wa, avg_sa = 0, 0, 0
for i in range(self.args.epochs):
if self.args.random_batch:
batch, start = self.random_select([X, Y, X_len, Y_len], self.args.batch_size, start)
else:
if self.args.shuffle_batch and start == 0:
c = list(zip(X, Y, X_len, Y_len))
random.shuffle(c)
X, Y, X_len, Y_len = zip(*c)
batch, start = self.select([X, Y, X_len, Y_len], self.args.batch_size, start)
feed = {self.x: batch[0], self.y: batch[1], self.x_len: batch[2], self.y_len: batch[3],
self.noise_weight: self.args.noise_weight}
_, loss, word_acc, sent_acc = self.sess.run(fetch, feed_dict=feed)
avg_loss += loss
avg_wa += word_acc
avg_sa += sent_acc
if i % log_step == 0:
print(
i, avg_loss / log_step, avg_wa / log_step,
avg_sa / log_step)
avg_loss, avg_wa, avg_sa = 0, 0, 0
def test(self, X, Y, X_len, Y_len, name, noise_weight=0.0):
fetch = [self.loss, self.word_accuracy, self.sent_accuracy, self.prediction, self.attention, self.switch]
feed = {self.x: X, self.y: Y, self.x_len: X_len, self.y_len: Y_len, self.noise_weight: noise_weight}
loss, word_scc, sent_acc, prediction, attention, switch = self.sess.run(fetch, feed_dict=feed)
print(name, loss, word_scc, sent_acc)
return prediction, attention, switch, sent_acc
class LSTMModel(SimpleModel):
def attention_generation(self, x):
units = 8
n_stacks = 2
x = tf.unstack(x, self.max_input_length, 1)
cell_fw = [tf.nn.rnn_cell.BasicRNNCell(units) for _ in range(n_stacks)]
cell_bw = [tf.nn.rnn_cell.BasicRNNCell(units) for _ in range(n_stacks)]
x, _, _ = tf.contrib.rnn.stack_bidirectional_rnn(
cell_fw, cell_bw, x, dtype=tf.float32)
outputs = tf.stack(x[:self.max_output_length], 1)
with tf.variable_scope("attention_network"):
score = self.ff(outputs, 1, 32,
self.max_input_length)
with tf.variable_scope("attention_softmax"):
attention = tf.nn.softmax(score / 10, dim=-1, name='attention')
return attention
class S2SModel(SimpleModel):
def get_decoder_cell(self, encoder_state, encoder_outputs, decoder_cell,
num_units, source_sequence_length):
return decoder_cell, encoder_state
def get_encoder_bidirectional(self, x):
encoder_cell_fw = tf.nn.rnn_cell.BasicLSTMCell(self.args.num_units / 2)
encoder_cell_bw = tf.nn.rnn_cell.BasicLSTMCell(self.args.num_units / 2)
if self.args.use_input_length:
encoder_outputs, encoder_state = tf.nn.bidirectional_dynamic_rnn(
encoder_cell_fw, encoder_cell_bw, x, sequence_length=self.x_len, dtype=tf.float32)
else:
encoder_outputs, encoder_state = tf.nn.bidirectional_dynamic_rnn(
encoder_cell_fw, encoder_cell_bw, x, dtype=tf.float32)
h = tf.concat([encoder_state[0].h, encoder_state[1].h], 1)
c = tf.concat([encoder_state[0].c, encoder_state[1].c], 1)
state = tf.nn.rnn_cell.LSTMStateTuple(h, c)
return tf.concat(encoder_outputs, 2), state
def get_encoder(self, x):
encoder_cell = tf.nn.rnn_cell.BasicLSTMCell(self.args.num_units)
if self.args.use_input_length:
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
encoder_cell, x, sequence_length=self.x_len, dtype=tf.float32)
else:
encoder_outputs, encoder_state = tf.nn.dynamic_rnn(
encoder_cell, x, dtype=tf.float32)
return encoder_outputs, encoder_state
def get_decoder_input(self):
if not self.args.use_decoder_input:
zeros = tf.zeros(shape=self.batch_size)
unsqueezed = tf.reshape(zeros, [-1, 1, 1])
decoder_emb_inp = tf.tile(unsqueezed, [1, self.max_output_length, 1])
return decoder_emb_inp
else:
embeddings = tf.Variable(
tf.random_uniform([self.U, self.args.output_embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, self.y)
decoder_emb_inp = tf.manip.roll(embed, 1, 1)
return decoder_emb_inp
def attention_generation(self, x):
num_units = self.args.num_units
source_sequence_length = self.x_len
# Encoder
if self.args.bidirectional_encoder:
encoder_outputs, encoder_state = self.get_encoder_bidirectional(x)
else:
encoder_outputs, encoder_state = self.get_encoder(x)
# Decoder
decoder_emb_inp = self.get_decoder_input()
decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)
decoder_cell, encoder_state = self.get_decoder_cell(
encoder_state, encoder_outputs, decoder_cell,
num_units, source_sequence_length)
ones = tf.ones(shape=self.batch_size, dtype=tf.int32)
lengths = ones * self.max_output_length
helper = tf.contrib.seq2seq.TrainingHelper(decoder_emb_inp, lengths)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,
encoder_state)
outputs, final_state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(
decoder)
logits = outputs.rnn_output
with tf.variable_scope("attention_network"):
score = self.ff(logits, 1, 32,
self.max_input_length)
with tf.variable_scope("attention_softmax"):
if self.args.masked_attention:
score = score / self.args.attention_temperature
ex = tf.exp(score) * tf.expand_dims(self.input_mask_float, 1)
attention = ex / tf.reduce_sum(ex, -1, keepdims=True)
else:
attention = tf.nn.softmax(
score / self.args.attention_temperature, dim=-1, name='attention')
return attention
class S2SAttentionModel(S2SModel):
def get_decoder_cell(self, encoder_state, encoder_outputs, decoder_cell,
num_units, source_sequence_length):
attention_states = encoder_outputs
attention_mechanism = tf.contrib.seq2seq.LuongAttention(
num_units, attention_states,
memory_sequence_length=source_sequence_length)
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
decoder_cell, attention_mechanism,
attention_layer_size=num_units)
initial_state = decoder_cell.zero_state(dtype=tf.float32,
batch_size=self.batch_size)
initial_state = initial_state.clone(cell_state=encoder_state)
return decoder_cell, initial_state