-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathAlz.py
401 lines (279 loc) · 12.4 KB
/
Alz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 7 16:33:21 2017
@author: anthony
"""
import matplotlib
matplotlib.use('Agg')
import math
import json
import numpy as np
import numpy.ma as ma
import scipy as scipy
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap
from mpl_toolkits.axes_grid1 import make_axes_locatable
import itertools
from sklearn import svm, datasets
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
import theano
import theano.tensor as T
import keras
from keras import backend as K
from keras.utils import np_utils
from keras.engine import Layer
from keras.layers import Input, Dense, Convolution1D, Convolution2D, MaxPooling2D, Deconvolution2D, UpSampling2D, Reshape, Flatten, ZeroPadding2D, BatchNormalization, Lambda, Dropout, Activation
from keras.layers.convolutional import Convolution2D, MaxPooling2D,Conv3D,MaxPooling3D
from keras.models import Model, Sequential
from keras.models import model_from_json
from keras.optimizers import SGD, RMSprop, Adam
from keras.layers.advanced_activations import LeakyReLU
from keras.preprocessing import image
from keras.callbacks import Callback
from keras.models import load_model
from keras.callbacks import ModelCheckpoint
from keras.callbacks import EarlyStopping
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import OneHotEncoder
theano.config.opennp = True
model_version = 'v1_3d'
channels = 62
img_size_x = 96
img_size_y = 96
batch_size = 128
nb_classes = 3
nb_epoch = 25
c = 0
learning_rate = 0.003
early_stopping_patience = 20
class_names = ["CN", "MCI", "AD"]
"""Custom CMAP"""
# Choose colormap
binary_cmap = cm.binary
# Get the colormap colors
scan_cmap = binary_cmap(np.arange(cm.binary.N))
# Set alpha
scan_cmap[:,-1] = np.linspace(0, 1, cm.binary.N)
# Create new colormap
scan_cmap = ListedColormap(scan_cmap)
"""Get Data"""
c = 0
def load_dataset(dimension = '3d'):
def load_mri_images(filename):
global c
data = np.load(filename)
tmp = c
c = tmp + 1
print 'Loaded image set %d of 32.' %c
return data
def imgwise_2d_scaling(data):
#loop over patients
for i in range(len(data)):
for j in range(len(data[i][0])):
max_val_2d = np.amax(data[i][0][j])
data[i][0][j] = data[i][0][j].astype('float32')
data[i][0][j] /= max_val_2d
print 'Executed imagewise 2d scaling.'
return data
def imgwise_3d_scaling(data):
#loop over patients
for i in range(len(data)):
max_val_3d = np.amax(data[i][0])
data[i][0] = data[i][0].astype('float32')
data[i][0] /= max_val_3d
print 'Executed imagewise 3d scaling.'
return data
def reshape_mri_images(data):
#Reshape the loaded dataset to the appropriate format.
data = np.expand_dims(data,axis=1)
if(dimension == '3d'):
data = np.reshape(data, (-1, 1, channels, img_size_x, img_size_y))
print 'Reshaped images.'
return data
def load_mri_labels(filename, train_valid_test):
data = pd.read_csv(filename)
data = data.loc[data['train_valid_test'] == train_valid_test]
data = np.asarray(data.diagnosis)
data_new = np.array([])
if(dimension == '2d'):
for i, item in enumerate(data):
data_temp = np.array([])
for i in range(channels):
data_temp = np.append(data_temp, item)
data_new = np.append(data_new, data_temp)
else:
data_new = data
data_new = data_new.reshape((-1, 1))
data_new = data_new.astype(np.int64)
#labels start at 1, normalise them to start at 0.
data_new = np.subtract(data_new, 1)
data_new = np_utils.to_categorical(data_new, nb_classes)
print 'Loaded labels.'
return data_new
train_data = load_mri_images('img_array_train_6k_1.npy')
for i in range(2,23):
train_cur = load_mri_images('img_array_train_6k_%d.npy' %i)
train_data = np.vstack((train_data, train_cur))
train_data = reshape_mri_images(train_data)
val_data = load_mri_images('img_array_valid_6k_1.npy')
for i in range(2,6):
valid_cur = load_mri_images('img_array_valid_6k_%d.npy' %i)
val_data = np.vstack((val_data, valid_cur))
val_data = reshape_mri_images(val_data)
test_data = load_mri_images('img_array_test_6k_1.npy')
for i in range(2,6):
test_cur = load_mri_images('img_array_test_6k_%d.npy' %i)
test_data = np.vstack((test_data, test_cur))
test_data = reshape_mri_images(test_data)
if(dimension == '3d'):
train_data = imgwise_3d_scaling(train_data)
val_data = imgwise_3d_scaling(val_data)
test_data = imgwise_3d_scaling(test_data)
else:
train_data = imgwise_2d_scaling(train_data)
val_data = imgwise_2d_scaling(val_data)
test_data = imgwise_2d_scaling(test_data)
train_labels = load_mri_labels('adni_demographic_master_kaggle.csv', 0)
val_labels = load_mri_labels('adni_demographic_master_kaggle.csv', 1)
test_labels = load_mri_labels('adni_demographic_master_kaggle.csv', 2)
print 'Done.'
return train_data, train_labels, test_data, test_labels, val_data, val_labels
def build_cnn(dimension = '3d', activation = 'softmax', heatmap = False, w_path = None, compile_model = True):
input_3d = (1, channels, img_size_x, img_size_y)
input_2d = (1, img_size_x, img_size_y)
pool_3d = (2, 2, 2)
pool_2d = (2, 2)
def global_average_pooling(x):
return K.mean(x, axis = (2, 3))
def global_average_pooling_shape(input_shape):
return input_shape[0:2]
def build_conv_3d():
model = Sequential()
model.add(Conv3D(8, kernel_size=(3, 3, 3), input_shape=(train_data.shape[1:]), border_mode='same'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), border_mode='same'))
model.add(Conv3D(8, kernel_size=(3, 3, 3), input_shape=(train_data.shape[1:]), border_mode='same'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), border_mode='same'))
model.add(Conv3D(8, kernel_size=(3, 3, 3), input_shape=(train_data.shape[1:]), border_mode='same'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), border_mode='same'))
return model
def build_conv_2d():
model = Sequential()
model.add(Convolution2D(8, 3, 3, name='conv1', input_shape=input_2d))
model.add(MaxPooling2D(pool_size=pool_2d, name='pool1'))
model.add(Convolution2D(8, 3, 3, name='conv2'))
model.add(MaxPooling2D(pool_size=pool_2d, name='pool2'))
model.add(Convolution2D(8, 3, 3, name='conv3'))
model.add(MaxPooling2D(pool_size=pool_2d, name='pool3'))
return model
if(dimension == '3d'):
model = build_conv_3d()
else:
model = build_conv_2d()
model.add(Flatten())
model.add(Dense(2000, activation='relu', name='dense1'))
model.add(Dropout(0.5, name='dropout1'))
model.add(Dense(500, activation='relu', name='dense2'))
model.add(Dropout(0.5, name='dropout2'))
model.add(Dense(nb_classes, activation=activation, name='softmax'))
if w_path:
model.load_weights(w_path)
opt = keras.optimizers.Adadelta(clipnorm=1.)
if(compile_model):
model.compile(optimizer=opt,loss='categorical_crossentropy', metrics=['accuracy'])
print 'Done building model.'
return model
class SGDLearningRateTracker(Callback):
def on_epoch_end(self, epoch, logs={}):
optimizer = self.model.optimizer
lr = K.eval(optimizer.lr * (1. / (1. + optimizer.decay * optimizer.iterations)))
print str('\nLR: {:.6f}\n').format(float(lr))
def fit_model(model, v, train_data, train_labels, val_data, val_labels):
model_weights_file = 'img_classifier_weights_%s.h5' %v
epoch_weights_file = 'img_classifier_weights_%s_{epoch:02d}_{val_acc:.2f}.hdf5' %v
model_file = 'img_classifier_model_%s.h5' %v
history_file = 'img_classifier_history_%s.json' %v
def save_model_and_weights():
model.save(model_file)
model.save_weights(model_weights_file)
return 'Saved model and weights to disk!'
def save_model_history(m):
with open(history_file, 'wb') as history_json_file:
json.dump(m.history, history_json_file)
return 'Saved model history to disk!'
def visualise_accuracy(m):
plt.plot(m.history['acc'])
plt.plot(m.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
def visualise_loss(m):
plt.plot(m.history['loss'])
plt.plot(m.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
def model_callbacks():
checkpoint = ModelCheckpoint(epoch_weights_file, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=early_stopping_patience, verbose=1, mode='auto')
lr_tracker = SGDLearningRateTracker()
return [checkpoint,early_stopping,lr_tracker]
callbacks_list = model_callbacks()
m = model.fit(train_data,train_labels,batch_size=batch_size,nb_epoch=nb_epoch,verbose=1,shuffle=True,validation_data=(val_data,val_labels),callbacks=callbacks_list)
print save_model_and_weights()
print save_model_history(m)
visualise_accuracy(m)
visualise_loss(m)
return m
def get_activations(model, layer, X_batch):
get_activations = K.function([model.layers[0].input, K.learning_phase()], [model.layers[layer].output,])
activations = get_activations([X_batch,0])
return activations
def evaluate_model(m, weights, test_data, test_labels):
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.close('all')
m.load_weights(weights)
m.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
print "Done compiling model."
prediction = m.predict(test_data)
prediction_labels = np_utils.to_categorical(np.argmax(prediction, axis=1), nb_classes)
print 'Accuracy on test data:', accuracy_score(test_labels, prediction_labels)
print 'Classification Report'
print classification_report(test_labels, prediction_labels, target_names = class_names)
# Compute confusion matrix
cnf_matrix = confusion_matrix(np.argmax(test_labels, axis=1), np.argmax(prediction, axis=1))
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plt.figure()
plot_confusion_matrix(cnf_matrix, classes = class_names, normalize=False, title='Confusion matrix')
plt.show()
#load data
train_data, train_labels, test_data, test_labels, val_data, val_labels = load_dataset(dimension = '3d')
model = build_cnn(dimension = '3d')
fit_model(model, model_version, train_data, train_labels, val_data, val_labels)
loaded_model = build_cnn(dimension = '3d')
evaluate_model(loaded_model, 'img_classifier_model_v1_3d.h5', test_data, test_labels)