-
Notifications
You must be signed in to change notification settings - Fork 47
/
Kinematics_ECI.m
76 lines (65 loc) · 2.93 KB
/
Kinematics_ECI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function [f_ib_b,omega_ib_b] = Kinematics_ECI(tor_i,C_b_i,...
old_C_b_i,v_ib_i,old_v_ib_i,r_ib_i);
%Kinematics_ECI - calculates specific force and angular rate from input
%w.r.t and resolved along ECI-frame axes
%
% Software for use with "Principles of GNSS, Inertial, and Multisensor
% Integrated Navigation Systems," Second Edition.
%
% This function created 1/4/2012 by Paul Groves
%
% Inputs:
% tor_i time interval between epochs (s)
% C_b_i body-to-ECI-frame coordinate transformation matrix
% old_C_b_i previous body-to-ECI-frame coordinate transformation matrix
% v_ib_i velocity of body frame w.r.t. ECI frame, resolved along
% ECI-frame axes (m/s)
% old_v_ib_i previous velocity of body frame w.r.t. ECI frame, resolved
% along ECI-frame axes (m/s)
% r_ib_i Cartesian position of body frame w.r.t. ECI frame, resolved
% along ECI-frame axes (m)
% Outputs:
% f_ib_b specific force of body frame w.r.t. ECI frame, resolved
% along body-frame axes, averaged over time interval (m/s^2)
% omega_ib_b angular rate of body frame w.r.t. ECI frame, resolved
% about body-frame axes, averaged over time interval (rad/s)
% Copyright 2012, Paul Groves
% License: BSD; see license.txt for details
% Begins
if tor_i > 0
% Obtain coordinate transformation matrix from the old attitude to the new
C_old_new = C_b_i' * old_C_b_i;
% Calculate the approximate angular rate
alpha_ib_b(1,1) = 0.5 * (C_old_new(2,3) - C_old_new(3,2));
alpha_ib_b(2,1) = 0.5 * (C_old_new(3,1) - C_old_new(1,3));
alpha_ib_b(3,1) = 0.5 * (C_old_new(1,2) - C_old_new(2,1));
% Calculate and apply the scaling factor
temp = acos(0.5 * (C_old_new(1,1) + C_old_new(2,2) + C_old_new(3,3)...
- 1.0));
if temp>2e-5 %scaling is 1 if temp is less than this
alpha_ib_b = alpha_ib_b * temp/sin(temp);
end %if temp
% Calculate the angular rate
omega_ib_b = alpha_ib_b / tor_i;
% Calculate the specific force resolved about ECI-frame axes
% From (5.18) and (5.20),
f_ib_i = ((v_ib_i - old_v_ib_i) / tor_i) - Gravitation_ECI(r_ib_i);
% Calculate the average body-to-ECI-frame coordinate transformation
% matrix over the update interval using (5.84)
mag_alpha = sqrt(alpha_ib_b' * alpha_ib_b);
Alpha_ib_b = Skew_symmetric(alpha_ib_b);
if mag_alpha>1.E-8
ave_C_b_i = old_C_b_i * (eye(3) + (1 - cos(mag_alpha)) /mag_alpha^2 ...
* Alpha_ib_b + (1 - sin(mag_alpha) / mag_alpha) / mag_alpha^2 ...
* Alpha_ib_b * Alpha_ib_b);
else
ave_C_b_i = old_C_b_i;
end %if mag_alpha
% Transform specific force to body-frame resolving axes using (5.81)
f_ib_b = inv(ave_C_b_i) * f_ib_i;
else
% If time interval is zero, set angular rate and specific force to zero
omega_ib_b = [0;0;0];
f_ib_b = [0;0;0];
end %if tor_i
% Ends