forked from jiegzhan/multi-class-text-classification-cnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
text_cnn.py
80 lines (68 loc) · 3.18 KB
/
text_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import tensorflow as tf
class TextCNN(object):
def __init__(self, sequence_length, num_classes, vocab_size, embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name='input_x')
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name='input_y')
self.dropout_keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope('embedding'):
W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name='W')
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope('conv-maxpool-%s' % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name='W')
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name='b')
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding='VALID',
name='conv')
# Apply nonlinearity
h = tf.nn.relu(tf.nn.bias_add(conv, b), name='relu')
# Maxpooling over the outputs
pooled = tf.nn.max_pool(
h,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name='pool')
pooled_outputs.append(pooled)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs,3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
# Add dropout
with tf.name_scope('dropout'):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope('output'):
W = tf.get_variable(
'W',
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name='b')
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name='scores')
self.predictions = tf.argmax(self.scores, 1, name='predictions')
# Calculate mean cross-entropy loss
with tf.name_scope('loss'):
losses = tf.nn.softmax_cross_entropy_with_logits(labels = self.input_y, logits = self.scores) # only named arguments accepted
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope('accuracy'):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, 'float'), name='accuracy')
with tf.name_scope('num_correct'):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.num_correct = tf.reduce_sum(tf.cast(correct_predictions, 'float'), name='num_correct')