forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab-03-X-minimizing_cost_tf_gradient.py
52 lines (40 loc) · 1.28 KB
/
lab-03-X-minimizing_cost_tf_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Lab 3 Minimizing Cost
# This is optional
import tensorflow as tf
# tf Graph Input
X = [1, 2, 3]
Y = [1, 2, 3]
# Set wrong model weights
W = tf.Variable(5.)
# Linear model
hypothesis = X * W
# Manual gradient
gradient = tf.reduce_mean((W * X - Y) * X) * 2
# cost/loss function
cost = tf.reduce_mean(tf.square(hypothesis - Y))
# Minimize: Gradient Descent Optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
# Get gradients
gvs = optimizer.compute_gradients(cost)
# Optional: modify gradient if necessary
# gvs = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gvs]
# Apply gradients
apply_gradients = optimizer.apply_gradients(gvs)
# Launch the graph in a session.
with tf.Session() as sess:
# Initializes global variables in the graph.
sess.run(tf.global_variables_initializer())
for step in range(101):
gradient_val, gvs_val, _ = sess.run([gradient, gvs, apply_gradients])
print(step, gradient_val, gvs_val)
'''
0 37.333332 [(37.333336, 5.0)]
1 33.84889 [(33.84889, 4.6266665)]
2 30.689657 [(30.689657, 4.2881775)]
3 27.825289 [(27.825289, 3.981281)]
...
97 0.0027837753 [(0.0027837753, 1.0002983)]
98 0.0025234222 [(0.0025234222, 1.0002704)]
99 0.0022875469 [(0.0022875469, 1.0002451)]
100 0.0020739238 [(0.0020739238, 1.0002222)]
'''