forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab-09-4-xor_tensorboard.py
85 lines (67 loc) · 2.38 KB
/
lab-09-4-xor_tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Lab 9 XOR
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility
x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
X = tf.placeholder(tf.float32, [None, 2], name="x")
Y = tf.placeholder(tf.float32, [None, 1], name="y")
with tf.name_scope("Layer1"):
W1 = tf.Variable(tf.random_normal([2, 2]), name="weight_1")
b1 = tf.Variable(tf.random_normal([2]), name="bias_1")
layer1 = tf.sigmoid(tf.matmul(X, W1) + b1)
tf.summary.histogram("W1", W1)
tf.summary.histogram("b1", b1)
tf.summary.histogram("Layer1", layer1)
with tf.name_scope("Layer2"):
W2 = tf.Variable(tf.random_normal([2, 1]), name="weight_2")
b2 = tf.Variable(tf.random_normal([1]), name="bias_2")
hypothesis = tf.sigmoid(tf.matmul(layer1, W2) + b2)
tf.summary.histogram("W2", W2)
tf.summary.histogram("b2", b2)
tf.summary.histogram("Hypothesis", hypothesis)
# cost/loss function
with tf.name_scope("Cost"):
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
tf.summary.scalar("Cost", cost)
with tf.name_scope("Train"):
train = tf.train.AdamOptimizer(learning_rate=0.01).minimize(cost)
# Accuracy computation
# True if hypothesis>0.5 else False
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
tf.summary.scalar("accuracy", accuracy)
# Launch graph
with tf.Session() as sess:
# tensorboard --logdir=./logs/xor_logs
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter("./logs/xor_logs_r0_01")
writer.add_graph(sess.graph) # Show the graph
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
for step in range(10001):
_, summary, cost_val = sess.run(
[train, merged_summary, cost], feed_dict={X: x_data, Y: y_data}
)
writer.add_summary(summary, global_step=step)
if step % 100 == 0:
print(step, cost_val)
# Accuracy report
h, p, a = sess.run(
[hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}
)
print(f"\nHypothesis:\n{h} \nPredicted:\n{p} \nAccuracy:\n{a}")
"""
Hypothesis:
[[6.1310326e-05]
[9.9993694e-01]
[9.9995077e-01]
[5.9751470e-05]]
Predicted:
[[0.]
[1.]
[1.]
[0.]]
Accuracy:
1.0
"""