-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
28 lines (23 loc) · 1.01 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import logging
import random
import numpy as np
import mxnet as mx
from datautils import Seq2SeqIter, default_build_vocab
from seq2seq import Seq2Seq
CTX = mx.cpu()
def main(**args):
vocab, vocab_rsd = default_build_vocab('./data/vocab.txt')
vocab_size = len(vocab)
print 'vocabulary size is %d' % vocab_size
data = Seq2SeqIter(data_path='./data/data.pickle', source_path='./data/a.txt',
target_path='./data/b.txt', vocab=vocab,
vocab_rsd=vocab_rsd, batch_size=10, max_len=25,
data_name='data', label_name='label', split_char='\n',
text2id=None, read_content=None, model_parallel=False)
print 'training data size is %d' % data.size
model = Seq2Seq(seq_len=25, batch_size=10, num_layers=1,
input_size=vocab_size, embed_size=150, hidden_size=150,
output_size=vocab_size, dropout=0.0, mx_ctx=CTX)
model.train(dataset=data, epoch=5)
if __name__ == "__main__":
main()