-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathDeepPA.py
728 lines (616 loc) · 24.8 KB
/
DeepPA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import sys
from einops.layers.torch import Rearrange
from einops import rearrange, repeat
from src.base.model import BaseModel
from src.layers.embedding import TimeEmbedding
import numpy as np
import time
class DeepPA(BaseModel):
"""
DeepPA model for time series prediction.
Args:
dropout (float): Dropout rate (default: 0.3).
spatial_flag (bool): Whether to use Spatial Transformer (default: True).
temporal_flag (bool): Whether to use Temporal Transformer (default: True).
spatial_encoding (bool): Whether to use spatial encoding (default: True).
temporal_encoding (bool): Whether to use temporal encoding (default: True).
temporal_PE (bool): Whether to use temporal positional encoding (default: True).
GCO (bool): Whether to use Graph Convolution Operator (default: True).
CLUSTER (bool): Whether to use clustering (default: True).
n_hidden (int): Number of hidden units (default: 32).
end_channels (int): Number of output channels in the end convolutional layers (default: 512).
n_blocks (int): Number of blocks in the model (default: 2).
n_heads (int): Number of attention heads (default: 2).
mlp_expansion (int): Expansion factor for the MLP layers (default: 2).
covar_dim (int): Dimension of the covariate input (default: 10).
GCO_Thre (float): Threshold for Graph Convolution Operator (default: 0.5).
**args: Additional keyword arguments.
Attributes:
dropout (float): Dropout rate.
n_blocks (int): Number of blocks in the model.
spatial_flag (bool): Whether to use Spatial Transformer.
temporal_flag (bool): Whether to use Temporal Transformer.
spatial_encoding (bool): Whether to use spatial encoding.
temporal_encoding (bool): Whether to use temporal encoding.
temporal_PE (bool): Whether to use temporal positional encoding.
GCO (bool): Whether to use Graph Convolution Operator.
CLUSTER (bool): Whether to use clustering.
GCO_Thre (float): Threshold for Graph Convolution Operator.
assignment (torch.Tensor): Assignment matrix for spatial encoding.
mask (torch.Tensor): Mask matrix for spatial encoding.
t_modules (nn.ModuleList): List of TemporalTransformer modules.
s_modules (nn.ModuleList): List of SpatialTransformer modules.
temporal_convs (nn.ModuleList): List of temporal convolutional layers.
spatial_convs (nn.ModuleList): List of spatial convolutional layers.
skip_convs (nn.ModuleList): List of skip connection convolutional layers.
embed (TimeEmbedding): Time embedding module.
start_conv (nn.Conv2d): Start convolutional layer.
covar_linear (nn.Sequential): Covariate linear layers.
end_conv_1 (nn.Conv2d): First end convolutional layer.
end_conv_2 (nn.Conv2d): Second end convolutional layer.
"""
def __init__(
self,
dropout=0.3,
spatial_flag=True,
temporal_flag=True,
spatial_encoding=True,
temporal_encoding=True,
temporal_PE=True,
GCO=True,
CLUSTER=True,
n_hidden=32,
end_channels=512,
n_blocks=2,
n_heads=2,
mlp_expansion=2,
covar_dim=10,
GCO_Thre=0.5,
**args,
):
super(DeepPA, self).__init__(**args)
self.dropout = dropout
self.n_blocks = n_blocks
self.spatial_flag = spatial_flag
self.temporal_flag = temporal_flag
self.spatial_encoding = spatial_encoding
self.temporal_encoding = temporal_encoding
self.temporal_PE = temporal_PE
self.GCO = GCO
self.CLUSTER = CLUSTER
self.GCO_Thre = GCO_Thre
path_assignment = "data/region/assignment.npy" # [n, m]
path_mask = "data/region/mask.npy" # [n, n]
self.assignment = (
torch.from_numpy(np.load(path_assignment)).float().to(self.device)
)
self.mask = torch.from_numpy(np.load(path_mask)).bool().to(self.device)
dist = torch.Tensor(np.load("data/base/dist.npy")).to(self.device)
dist_mask = dist > 1
self.mask = torch.logical_and(self.mask, dist_mask)
if not self.temporal_flag:
self.temporal_convs = nn.ModuleList()
else:
self.t_modules = nn.ModuleList()
if not self.spatial_flag:
self.spatial_convs = nn.ModuleList()
else:
self.s_modules = nn.ModuleList()
self.skip_convs = nn.ModuleList()
self.embed = TimeEmbedding()
self.start_conv = nn.Conv2d(
in_channels=1, out_channels=n_hidden, kernel_size=(1, 3), padding=(0, 1)
)
self.covar_linear = nn.Sequential(
nn.Linear(covar_dim, n_hidden // 2),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(n_hidden // 2, n_hidden),
)
for _ in range(n_blocks):
window_size = self.seq_len
print("ws=", window_size)
if self.temporal_flag:
self.t_modules.append(
TemporalTransformer(
temporal_PE,
n_hidden,
depth=1,
heads=n_heads,
window_size=window_size,
mlp_dim=n_hidden * mlp_expansion,
num_time=self.seq_len,
device=self.device,
)
)
else:
self.temporal_convs.append(
nn.Conv1d(
in_channels=n_hidden, out_channels=n_hidden, kernel_size=(1, 1)
)
)
if self.spatial_flag:
self.s_modules.append(
SpatialTransformer(
spatial_encoding,
temporal_encoding,
n_hidden,
GCO=self.GCO,
CLUSTER=self.CLUSTER,
depth=1,
heads=n_heads,
mlp_dim=n_hidden * mlp_expansion,
num_nodes=self.num_nodes,
assignment=self.assignment,
mask=self.mask,
dropout=dropout,
device=self.device,
GCO_Thre=self.GCO_Thre,
)
)
else:
self.spatial_convs.append(
nn.Conv1d(
in_channels=n_hidden, out_channels=n_hidden, kernel_size=(1, 1)
)
)
self.end_conv_1 = nn.Conv2d(
in_channels=n_hidden,
out_channels=end_channels,
kernel_size=(1, 1),
bias=True,
)
self.end_conv_2 = nn.Conv2d(
in_channels=end_channels,
out_channels=self.horizon * self.output_dim,
kernel_size=(1, 1),
bias=True,
)
def forward(self, X, supports=None):
"""
Forward pass of the DeepPA model.
Args:
X (torch.Tensor): Input tensor of shape (batch_size, seq_len, num_nodes, input_dim).
supports (list): List of support tensors for spatial encoding (default: None).
Returns:
torch.Tensor: Output tensor of shape (batch_size, horizon, num_nodes, output_dim).
"""
x_embed = self.embed(X[..., 1:].long())
X = torch.cat((X[..., 0:1], x_embed), -1) # [b, t, n, c]
X = X[..., 0:1]
covars = x_embed[:, :, 0, :-9] # [b, t, 10]
semantic = x_embed[0, 0, :, -9:] # [n, 9],
B, T, N, C = X.shape
x = X.permute(0, 3, 2, 1) # [b, c, n, t]
x = self.start_conv(x)
covars = (
self.covar_linear(covars).unsqueeze(2).permute(0, 3, 2, 1)
) # [b, c, 1, t] [8, 64, 1, 12]
for i in range(self.n_blocks):
if self.spatial_flag:
x, covars = self.s_modules[i](
x, supports[0], semantic, covars
) # [b, c, n, t] [b, c, 1, t]
else:
x = self.spatial_convs[i](x)
if self.temporal_flag:
x, covars = self.t_modules[i](x, covars) # [b, c, n, t]
else:
x = self.temporal_convs[i](x)
# x = self.bn[i](x) # [b, c, n, t]
x_hat = F.relu(self.end_conv_1(x[..., -1:]))
x_hat = self.end_conv_2(x_hat).reshape(B, self.horizon, self.output_dim, N)
x_hat = x_hat.permute(0, 1, 3, 2)
return x_hat # [b, t, n, c]
def pair(t):
"""
Returns a tuple with two elements.
If the input `t` is already a tuple, it is returned as is.
If the input `t` is not a tuple, it is wrapped in a tuple and returned.
Args:
t: The input value.
Returns:
tuple: A tuple with two elements.
Examples:
>>> pair(3)
(3, 3)
>>> pair((1, 2))
(1, 2)
"""
return t if isinstance(t, tuple) else (t, t)
class PreNorm(nn.Module):
"""
Pre-normalization module that applies layer normalization before forwarding the input to the given function.
Args:
dim (int): The input dimension.
fn (callable): The function to be applied after layer normalization.
Attributes:
norm (nn.LayerNorm): The layer normalization module.
fn (callable): The function to be applied after layer normalization.
"""
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
"""
Forward pass of the PreNorm module.
Args:
x (torch.Tensor): The input tensor.
**kwargs: Additional keyword arguments to be passed to the function.
Returns:
torch.Tensor: The output tensor after applying layer normalization and the given function.
"""
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
"""
A feedforward neural network module.
Args:
dim (int): The input dimension.
hidden_dim (int): The dimension of the hidden layer.
dropout (float, optional): The dropout probability. Default is 0.0.
Attributes:
net (nn.Sequential): The sequential network architecture.
"""
def __init__(self, dim, hidden_dim, dropout=0.0):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout),
)
def forward(self, x):
"""
Forward pass of the feedforward neural network.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor.
"""
return self.net(x)
class GCO_Module(nn.Module):
"""
GCO_Module (Graph Convolution Operator) module.
Args:
hidden_size (int): The size of the hidden state.
num_blocks (int): The number of blocks to divide the hidden state into.
GCO_Thre (int, optional): The threshold for the number of modes to keep. Defaults to 1.
hidden_size_factor (int, optional): The factor to scale the hidden size by. Defaults to 1.
"""
def __init__(self, hidden_size, num_blocks, GCO_Thre=1, hidden_size_factor=1):
super().__init__()
assert (
hidden_size % num_blocks == 0
), f"hidden_size {hidden_size} should be divisble by num_blocks {num_blocks}"
self.hidden_size = hidden_size
self.num_blocks = num_blocks
self.block_size = self.hidden_size // self.num_blocks
self.GCO_Thre = GCO_Thre
self.hidden_size_factor = hidden_size_factor
self.scale = 0.02
self.w1 = nn.Parameter(
self.scale
* torch.randn(
self.num_blocks,
self.block_size,
self.block_size * self.hidden_size_factor,
)
)
self.b1 = nn.Parameter(
self.scale
* torch.randn(self.num_blocks, self.block_size * self.hidden_size_factor)
)
self.w2 = nn.Parameter(
self.scale
* torch.randn(
self.num_blocks,
self.block_size * self.hidden_size_factor,
self.block_size,
)
)
self.b2 = nn.Parameter(
self.scale * torch.randn(self.num_blocks, self.block_size)
)
def forward(self, x):
"""
Forward pass of the GCO module.
Args:
x (torch.Tensor): The input tensor of shape (B, N, C), where B is the batch size,
N is the sequence length, and C is the number of channels.
Returns:
torch.Tensor: The output tensor of shape (B, N, C), representing the result of the
GCO operation applied to the input tensor.
"""
bias = x
dtype = x.dtype
x = x.float()
B, N, C = x.shape
x = torch.fft.rfft(x, dim=1, norm="ortho")
x = x.reshape(B, N // 2 + 1, self.num_blocks, self.block_size)
real_1 = torch.zeros(
[B, N // 2 + 1, self.num_blocks, self.block_size * self.hidden_size_factor],
device=x.device,
)
real_2 = torch.zeros(x.shape, device=x.device)
imag = torch.zeros(x.shape, device=x.device)
total_modes = N // 2 + 1
kept_modes = int(total_modes * self.GCO_Thre)
real_1[:, :kept_modes] = F.relu(
torch.einsum("...bi,bio->...bo", x[:, :kept_modes].real, self.w1) + self.b1
)
real_2[:, :kept_modes] = (
torch.einsum("...bi,bio->...bo", real_1[:, :kept_modes], self.w2) + self.b2
)
x = torch.stack([real_2, imag], dim=-1)
x = torch.view_as_complex(x)
x = x.reshape(B, N // 2 + 1, C)
x = torch.fft.irfft(x, n=N, dim=1, norm="ortho")
x = x.type(dtype)
return x + bias
class SpatialTransformer(nn.Module):
"""
Spatial Transformer module for DeepPA model.
Args:
spatial_encoding (bool): Flag indicating whether to use spatial encoding.
temporal_encoding (bool): Flag indicating whether to use temporal encoding.
dim (int): Dimension of the input features.
GCO (nn.Module): Graph Convolutional Operator module.
CLUSTER (nn.Module): Cluster module.
depth (int): Number of layers in the model.
heads (int): Number of attention heads.
device: Device to be used for computation.
mlp_dim (int): Dimension of the feedforward network in the model.
num_nodes (int): Number of nodes in the graph.
assignment: Assignment module.
mask: Mask module.
GCO_Thre: Threshold for Graph Convolutional Operator.
dropout (float, optional): Dropout rate. Defaults to 0.0.
semantic_dim (int, optional): Dimension of the semantic features. Defaults to 9.
covar_dim (int, optional): Dimension of the covariate features. Defaults to 10.
cluster (int, optional): Number of clusters. Defaults to 100.
attn_scale (float, optional): Scaling factor for attention weights. Defaults to 0.01.
"""
def __init__(
self,
spatial_encoding,
temporal_encoding,
dim,
GCO,
CLUSTER,
depth,
heads,
device,
mlp_dim,
num_nodes,
assignment,
mask,
GCO_Thre,
dropout=0.0,
semantic_dim=9,
covar_dim=10,
cluster=100,
attn_scale=0.01,
):
super().__init__()
self.spatial_encoding = spatial_encoding
self.temporal_encoding = temporal_encoding
self.GCO = GCO
self.CLUSTER = CLUSTER
self.GCO_Thre = GCO_Thre
self.attn_scale = attn_scale
if self.spatial_encoding:
self.sematic_to_embedding = nn.Sequential(
nn.Linear(semantic_dim, 32),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(32, 128),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(128, dim - dim // 8),
)
self.pos_embedding = nn.Parameter(torch.randn(num_nodes, dim // 8))
self.layers = nn.ModuleList([])
SA_node = num_nodes
for i in range(depth):
self.layers.append(
nn.ModuleList(
[
GCO_Module(
hidden_size=dim,
num_blocks=8,
hard_thresholding_fraction=1,
hidden_size_factor=1,
GCO_Thre=self.GCO_Thre,
),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)),
]
)
)
def forward(self, x, adj, semantic, covars=None):
"""
Forward pass of the SpatialTransformer module.
Args:
x (torch.Tensor): Input tensor of shape [b, c, n, t].
adj: Adjacency matrix.
semantic (torch.Tensor): Semantic tensor of shape [n, 10].
covars (torch.Tensor, optional): Covariate tensor of shape [b, c, 1, t]. Defaults to None.
Returns:
torch.Tensor: Output tensor of shape [b, c, n+1 or n, t] if temporal encoding is used, otherwise [b, c, n, t].
torch.Tensor: Covariate tensor of shape [b, c, 1, t] if temporal encoding is used, otherwise None.
"""
b, c, n, t = x.shape
x = x.permute(0, 3, 2, 1).reshape(b * t, n, c)
covars_tmp = covars.permute(0, 3, 2, 1).reshape(b * t, 1, c)
if self.spatial_encoding:
x = x + torch.cat(
[self.pos_embedding, self.sematic_to_embedding(semantic)], dim=-1
)
pos_embed = self.pos_embedding
sematic_to_embed = self.sematic_to_embedding(semantic)
if self.temporal_encoding:
x = torch.cat([covars_tmp, x], dim=1)
n = n + 1
else:
n = n
for gco, ff in self.layers:
if self.gco:
x = gco(x) + x
x = ff(x) + x
x = x.reshape(b, t, n, c).permute(0, 3, 2, 1)
if self.temporal_encoding:
return x[:, :, 1:, :], x[:, :, :1, :]
else:
return x, covars
class TemporalAttention(nn.Module):
"""
Temporal Attention module that applies self-attention mechanism over the temporal dimension of the input.
Args:
dim (int): The input feature dimension.
heads (int, optional): The number of attention heads. Defaults to 2.
window_size (int, optional): The size of the attention window. Defaults to 1.
qkv_bias (bool, optional): Whether to include bias terms in the query, key, and value linear layers. Defaults to False.
qk_scale (float, optional): Scale factor for the query and key. Defaults to None.
dropout (float, optional): Dropout rate. Defaults to 0.0.
causal (bool, optional): Whether to apply causal masking to the attention weights. Defaults to True.
device (torch.device, optional): The device on which the module is located. Defaults to None.
Attributes:
dim (int): The input feature dimension.
num_heads (int): The number of attention heads.
causal (bool): Whether to apply causal masking to the attention weights.
window_size (int): The size of the attention window.
scale (float): Scale factor for the query and key.
qkv (nn.Linear): Linear layer for the query, key, and value projection.
attn_drop (nn.Dropout): Dropout layer for attention weights.
proj (nn.Linear): Linear layer for the output projection.
proj_drop (nn.Dropout): Dropout layer for the output.
Methods:
forward(x): Performs a forward pass of the TemporalAttention module.
"""
def __init__(
self,
dim,
heads=2,
window_size=1,
qkv_bias=False,
qk_scale=None,
dropout=0.0,
causal=True,
device=None,
):
super().__init__()
assert dim % heads == 0, f"dim {dim} should be divided by num_heads {heads}."
self.dim = dim
self.num_heads = heads
self.causal = causal
self.window_size = window_size
head_dim = dim // heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(dropout)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(dropout)
self.mask = torch.tril(torch.ones(window_size, window_size)).to(device)
def forward(self, x):
"""
Performs a forward pass of the TemporalAttention module.
Args:
x (torch.Tensor): The input tensor of shape (B, T, C), where B is the batch size, T is the sequence length, and C is the input feature dimension.
Returns:
torch.Tensor: The output tensor of shape (B, T, C), where B is the batch size, T is the sequence length, and C is the output feature dimension.
"""
B_prev, T_prev, C_prev = x.shape
if self.window_size > 0:
x = x.reshape(-1, self.window_size, C_prev)
B, T, C = x.shape
qkv = (
self.qkv(x)
.reshape(B, -1, 3, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
q, k, v = qkv[0], qkv[1], qkv[2]
# merge key padding and attention masks
attn = (q @ k.transpose(-2, -1)) * self.scale # [b, heads, T, T]
if self.causal:
attn = attn.masked_fill_(self.mask == 0, float("-inf"))
x = (attn.softmax(dim=-1) @ v).transpose(1, 2).reshape(B, T, C)
x = self.proj(x)
x = self.proj_drop(x)
if self.window_size > 0:
x = x.reshape(B_prev, T_prev, C_prev)
return x
class TemporalTransformer(nn.Module):
"""
TemporalTransformer module that applies temporal attention and feed-forward layers.
Args:
temporal_PE (bool): Whether to use temporal positional encoding.
dim (int): Dimension of the input tensor.
depth (int): Number of layers in the transformer.
heads (int): Number of attention heads.
window_size (int): Size of the attention window.
mlp_dim (int): Dimension of the feed-forward layer.
num_time (int): Number of time steps.
dropout (float, optional): Dropout rate. Defaults to 0.0.
device (str, optional): Device to run the module on. Defaults to None.
covar_dim (int, optional): Dimension of the covariate tensor. Defaults to 10.
"""
def __init__(
self,
temporal_PE,
dim,
depth,
heads,
window_size,
mlp_dim,
num_time,
dropout=0.0,
device=None,
covar_dim=10,
):
super().__init__()
self.temporal_PE = temporal_PE
if temporal_PE:
self.pos_embedding = nn.Parameter(torch.randn(num_time, dim))
self.layers = nn.ModuleList([])
for i in range(depth):
self.layers.append(
nn.ModuleList(
[
TemporalAttention(
dim=dim,
heads=heads,
window_size=window_size,
dropout=dropout,
device=device,
),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout)),
]
)
)
def forward(self, x, covars):
"""
Forward pass of the TemporalTransformer module.
Args:
x (torch.Tensor): Input tensor of shape [b, c, n, t].
covars (torch.Tensor): Covariate tensor of shape [b, c, 1, t].
Returns:
torch.Tensor: Transformed tensor of shape [b, c, n, t].
torch.Tensor: Covariate tensor of shape [b, c, 1, t].
"""
b, c, n, t = x.shape
x = x.permute(0, 2, 3, 1).reshape(b * n, t, c) # [b*n, t, c]
if self.temporal_PE:
x = x + self.pos_embedding # [b*n, t, c]
covars = covars.permute(0, 2, 3, 1).reshape(b, t, c) # [b, t, c]
x = torch.cat([covars, x], dim=0) # [b+b*n, t, c]
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
covars = x[:b].reshape(b, 1, t, c).permute(0, 3, 1, 2) # [b, c, 1, t]
x = x[b:].reshape(b, n, t, c).permute(0, 3, 1, 2) # [b, c, n, t]
return x, covars