forked from shareourenthusiasm/lstm_roberta_dacon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_model.py
84 lines (75 loc) · 2.8 KB
/
custom_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import MSELoss
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
from loss import FocalLoss, softXEnt
class RobertaForSequenceClassification(RobertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.roberta = RobertaModel(config)
classifier_dropout = config.hidden_dropout_prob
self.lstm = nn.LSTM(
input_size=config.hidden_size,
hidden_size=config.hidden_size,
num_layers=2,
dropout=0.1,
batch_first=True,
bidirectional=True,
)
self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
lstm_output, (last_hidden, c) = self.lstm(sequence_output)
cat_hidden = torch.cat((last_hidden[0], last_hidden[1]), dim=1)
logits = self.classifier(cat_hidden)
loss = None
if labels is not None:
if self.num_labels == 1:
loss_fct = MSELoss()
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
if len(labels.size()) == len(logits.size()):
loss = softXEnt(logits.view(-1, self.num_labels), labels)
else:
loss_fct = FocalLoss(gamma=2) #data imbalance
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)