-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmonth.normal.r
208 lines (198 loc) · 8.57 KB
/
month.normal.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
month.normal <- function(variable, timestamp, calc = c("MEAN","SUM","MAX","MIN","SD","FRQ","SD-W","IXX","IXX-W"), threshold = NULL){
# timestamp and the last dimension of variable must have equal length
# variable = [time], [y, x, time], or [y, x, levels, time]
# FRQ & SD-W: for precipitation, frequency & standard deviation of wet-days only
# IXX: replace XX by any number >0 & <100 to obtain quantiles; can be decimals
# IXX-W: for precipitation, quantile on wet days only
# threshold - used by precipitation unit:[mm], to remove small values
# Note: the temporal resolution of the input is not changed, mind you are sending hourly or daily data!
if (is.vector(variable)){
variable = as.matrix(variable, nrow = length(variable))
ndim = 1
month.normal = c()
} else {
ndim = length(dim(variable))
month.normal = array(data = NA, dim = c(dim(variable)[1:(ndim-1)], 12))
}
if ( dim(variable)[ndim] != length(timestamp) ){
stop("timestamp and the last dimension of variable must have equal length!")
}
if (inherits(timestamp, "string")){
timestamp = strptime( timestamp, "%Y-%m-%d %H:%M:%S" )
} else {
if (inherits(timestamp, "POSIXct")){
timestamp = as.POSIXlt( timestamp )
} else {
if (!inherits(timestamp, "POSIXlt")){
stop("timestamp must be string, POSIXct, or POSIXlt")
}
}
}
if (!is.null(threshold)){
variable = variable * (variable >= threshold)
}
if (calc == "MEAN"){
if (ndim == 1){
for (i in 1:12){
month.normal[i] = mean(variable[timestamp$mon == i-1], na.rm=TRUE)
}
} else if (ndim == 3){
for (i in 1:12){
month.normal[,, i] = apply( variable[,, timestamp$mon == i-1], MARGIN = c(1,2), FUN = mean, na.rm=TRUE )
}
} else if (ndim == 4){
for (i in 1:12){
month.normal[,,, i] = apply( variable[,,, timestamp$mon == i-1], MARGIN = c(1,2,3), FUN = mean, na.rm=TRUE )
}
}
} else if (calc == "SUM"){
daysofmonth = c(31,28,31,30,31,30,31,31,30,31,30,31]
if (ndim == 1){
for (i in 1:12){
month.normal[i] = mean(variable[timestamp$mon == i-1], na.rm=TRUE) * daysofmonth[i]
}
} else if (ndim == 3){
for (i in 1:12){
month.normal[,, i] = apply( variable[,, timestamp$mon == i-1], MARGIN = c(1,2), FUN = mean, na.rm=TRUE ) * daysofmonth[i]
}
} else if (ndim == 4){
for (i in 1:12){
month.normal[,,, i] = apply( variable[,,, timestamp$mon == i-1], MARGIN = c(1,2,3), FUN = mean, na.rm=TRUE ) * daysofmonth[i]
}
}
} else if (calc == "MAX"){
if (ndim == 1){
for (i in 1:12){
month.normal[i] = max(variable[timestamp$mon == i-1], na.rm=TRUE)
}
} else if (ndim == 3){
for (i in 1:12){
month.normal[,, i] = apply( variable[,, timestamp$mon == i-1], MARGIN = c(1,2), FUN = max, na.rm=TRUE )
}
} else if (ndim == 4){
for (i in 1:12){
month.normal[,,, i] = apply( variable[,,, timestamp$mon == i-1], MARGIN = c(1,2,3), FUN = max, na.rm=TRUE )
}
}
} else if (calc == "MIN"){
if (ndim == 1){
for (i in 1:12){
month.normal[i] = min(variable[timestamp$mon == i-1], na.rm=TRUE)
}
} else if (ndim == 3){
for (i in 1:12){
month.normal[,, i] = apply( variable[,, timestamp$mon == i-1], MARGIN = c(1,2), FUN = min, na.rm=TRUE )
}
} else if (ndim == 4){
for (i in 1:12){
month.normal[,,, i] = apply( variable[,,, timestamp$mon == i-1], MARGIN = c(1,2,3), FUN = min, na.rm=TRUE )
}
}
} else if (calc == "SD"){
if (ndim == 1){
for (i in 1:12){
month.normal[i] = sd(variable[timestamp$mon == i-1], na.rm=TRUE)
}
} else if (ndim == 3){
for (i in 1:12){
month.normal[,, i] = apply( variable[,, timestamp$mon == i-1], MARGIN = c(1,2), FUN = sd, na.rm=TRUE )
}
} else if (ndim == 4){
for (i in 1:12){
month.normal[,,, i] = apply( variable[,,, timestamp$mon == i-1], MARGIN = c(1,2,3), FUN = sd, na.rm=TRUE )
}
}
} else if (calc == "FRQ"){
if (ndim == 1){
for (i in 1:12){
month.normal[i] = sum( variable[timestamp$mon == i-1] ) / sum( !is.na(variable[timestamp$mon == i-1]) )
}
} else if (ndim == 3){
for (i in 1:12){
temp = variable[,, timestampe$mon == i-1] > 0
month.normal[,, i] = apply( temp, MARGIN = c(1,2), FUN = sum, na.rm=TRUE ) / apply( !is.na(temp), MARGIN = c(1,2), FUN = sum, na.rm=TRUE )
}
} else if (ndim == 4){
for (i in 1:12){
temp = variable[,,, timestampe$mon == i-1] > 0
month.normal[,,, i] = apply( temp, MARGIN = c(1,2), FUN = sum, na.rm=TRUE ) / apply( !is.na(temp), MARGIN = c(1,2), FUN = sum, na.rm=TRUE )
}
}
} else if (calc == "SD-W"){
if (ndim == 1){
for (i in 1:12){
temp = variable[timestamp$mon == i-1]
month.normal[i] = sd( temp[ temp > 0 & !is.na(temp) ] )
}
} else if (ndim == 3){
for (i in 1:12){
for (j in 1:dim(temp)[1]){
for (k in 1:dim(temp)[2]){
temp = variable[j,k,timestamp$mon == i-1]
month.normal[j,k,i] = sd(temp[temp>0 & !is.na(temp)])
}
}
}
} else if (ndim == 4){
for (i in 1:12){
for (j in 1:dim(temp)[1]){
for (k in 1:dim(temp)[2]){
for (m in 1:dim(temp)[3]){
temp = variable[j,k,m,timestamp$mon == i-1]
month.normal[j,k,m,i] = sd(temp[temp>0 & !is.na(temp)])
}
}
}
}
}
} else {
dummy = strsplit( dummy, split = "" )
if (dummy[1] == "I"){
if (dummy[ length(dummy] ] == "W"){
qtl = as.numeric( paste(dummy[2:(length(dummy)-2)], sep="") ) / 100
if (ndim == 1){
for (i in 1:12){
temp = variable[timestamp$mon == i-1]
month.normal[i] = quantile( temp[ temp > 0 ], probs = qtl, na.rm =TRUE )
}
} else if (ndim == 3){
for (i in 1:12){
for (j in 1:dim(temp)[1]){
for (k in 1:dim(temp)[2]){
temp = variable[j,k,timestamp$mon == i-1]
month.normal[j,k,i] = quantile(temp[temp>0], probs = qtl, na.rm = TRUE)
}
}
}
} else if (ndim == 4){
for (i in 1:12){
for (j in 1:dim(temp)[1]){
for (k in 1:dim(temp)[2]){
for (m in 1:dim(temp)[3]){
temp = variable[j,k,m,timestamp$mon == i-1]
month.normal[j,k,m,i] = quantile(temp[temp>0], probs = qtl, na.rm = TRUE)
}
}
}
}
}
} else {
qtl = as.numeric( paste(dummy[2:length(dummy)], sep="") ) / 100
if (ndim == 1){
for (i in 1:12){
month.normal[i] = quantile(variable[timestamp$mon == i-1], probs = qtl, na.rm=TRUE)
}
} else if (ndim == 3){
for (i in 1:12){
month.normal[,, i] = apply( variable[,, timestamp$mon == i-1], MARGIN = c(1,2), FUN = quantile, probs = qtl, na.rm=TRUE )
}
} else if (ndim == 4){
for (i in 1:12){
month.normal[,,, i] = apply( variable[,,, timestamp$mon == i-1], MARGIN = c(1,2,3), FUN = quantile, probs = qtl, na.rm=TRUE )
}
}
}
}
}
return(month.normal)
}