-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_transformation.py
117 lines (101 loc) · 4.75 KB
/
train_transformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import time
import datetime
import argparse
from options.transformation_options import TransformationOptions
from cyclegan.unaligned_dataset import UnalignedDataset
from cyclegan.cycle_gan_model import CycleGANModel
from visualizer import Visualizer
import torch
import os
# Options
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = TransformationOptions.initialize(parser)
opt = parser.parse_args()
opt_str = ""
exp_name = TransformationOptions.process_opt_str(opt, opt_str)
opt.phase = "train"
opt.isTrain = True
opt.exp_name = exp_name
if opt.debug:
opt.verbose = True
print("exp-%s" % exp_name)
if not os.path.exists("log"):
os.makedirs("log")
txt_log_file = "log/%s.txt" % (exp_name)
with open(txt_log_file, 'w') as outfile:
outfile.write("%s\n" % exp_name)
outfile.write("%s\n" % str(datetime.datetime.now()))
# GPU
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
# Visualizer
visualizer = Visualizer(opt)
dataset = UnalignedDataset(opt)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=opt.batch_size,
shuffle=not opt.serial_batches,
num_workers=int(opt.num_threads))
dataset_size = len(dataloader)
print('The number of training images = %d' % dataset_size)
model = CycleGANModel(opt)
model.setup(opt) # regular setup: load and print networks; create schedulers
total_iters = 0 # the total number of training iterations
# model.save_networks('latest')
for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
model.update_learning_rate() # update learning rates in the beginning of every epoch.
for i, data in enumerate(dataloader): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if opt.debug:
#losses = model.get_current_losses()
visuals = model.get_current_visuals()
#print(losses)
print(model.panel_tracker)
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
model.compute_visuals()
visualizer.display_current_results(total_iters, model.get_current_visuals())
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.plot_current_losses(total_iters, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
expert_results = model.get_expert_selection_results()
if opt.debug:
print("Epoch panel results:")
print(expert_results)
visualizer.plot_items(epoch, expert_results)
# txt log
with open(txt_log_file, 'a') as outfile:
outfile.write("Epoch %d: %s\n" % (epoch, str(expert_results)))
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time))
print(model.epoch_panel_tracker)
if opt.early_stop_active_expert:
n_active_expert = (model.epoch_panel_tracker > 0).sum()
if n_active_expert < opt.n_experts - 1:
with open(txt_log_file, 'a') as outfile:
outfile.write("Early stop")
break
model.end_epoch()