diff --git a/docs/src/index.md b/docs/src/index.md index 523ac95b..c6864539 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -4,12 +4,12 @@ CurrentModule = NeuralOperators # NeuralOperators -| ![](https://github.com/foldfelis/NeuralOperators.jl/blob/master/example/FlowOverCircle/gallery/ans.gif?raw=true) | ![](https://github.com/foldfelis/NeuralOperators.jl/blob/master/example/FlowOverCircle/gallery/inferenced.gif?raw=true) | +| ![](https://github.com/foldfelis/NeuralOperators.jl/blob/main/example/FlowOverCircle/gallery/ans.gif?raw=true) | ![](https://github.com/foldfelis/NeuralOperators.jl/blob/main/example/FlowOverCircle/gallery/inferenced.gif?raw=true) | |:----------------:|:--------------:| | **Ground Truth** | **Inferenced** | The demonstration shown above is Navier-Stokes equation learned by the `MarkovNeuralOperator` with only one time step information. -Example can be found in [`example/FlowOverCircle`](https://github.com/SciML/NeuralOperators.jl/tree/master/example/FlowOverCircle). +Example can be found in [`example/FlowOverCircle`](https://github.com/SciML/NeuralOperators.jl/tree/main/example/FlowOverCircle). ## Quick start @@ -84,4 +84,4 @@ opt = Adam(learning_rate) parameters = params(model) Flux.@epochs 400 Flux.train!(loss, parameters, [(xtrain, ytrain, grid)], opt, cb=evalcb) ``` -A more complete example using DeepONet architecture to solve Burgers' equation can be found in the [examples](https://github.com/SciML/NeuralOperators.jl/blob/master/example/Burgers/src/Burgers_deeponet.jl). +A more complete example using DeepONet architecture to solve Burgers' equation can be found in the [examples](https://github.com/SciML/NeuralOperators.jl/blob/main/example/Burgers/src/Burgers_deeponet.jl).