forked from shyouhei/ruby
-
Notifications
You must be signed in to change notification settings - Fork 2
/
numeric.c
4260 lines (3814 loc) · 94.9 KB
/
numeric.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**********************************************************************
numeric.c -
$Author$
created at: Fri Aug 13 18:33:09 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/encoding.h"
#include "ruby/util.h"
#include "internal.h"
#include "id.h"
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#if defined(__FreeBSD__) && __FreeBSD__ < 4
#include <floatingpoint.h>
#endif
#ifdef HAVE_FLOAT_H
#include <float.h>
#endif
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#if !defined HAVE_ISFINITE && !defined isfinite
#if defined HAVE_FINITE && !defined finite && !defined _WIN32
extern int finite(double);
# define HAVE_ISFINITE 1
# define isfinite(x) finite(x)
#endif
#endif
/* use IEEE 64bit values if not defined */
#ifndef FLT_RADIX
#define FLT_RADIX 2
#endif
#ifndef FLT_ROUNDS
#define FLT_ROUNDS 1
#endif
#ifndef DBL_MIN
#define DBL_MIN 2.2250738585072014e-308
#endif
#ifndef DBL_MAX
#define DBL_MAX 1.7976931348623157e+308
#endif
#ifndef DBL_MIN_EXP
#define DBL_MIN_EXP (-1021)
#endif
#ifndef DBL_MAX_EXP
#define DBL_MAX_EXP 1024
#endif
#ifndef DBL_MIN_10_EXP
#define DBL_MIN_10_EXP (-307)
#endif
#ifndef DBL_MAX_10_EXP
#define DBL_MAX_10_EXP 308
#endif
#ifndef DBL_DIG
#define DBL_DIG 15
#endif
#ifndef DBL_MANT_DIG
#define DBL_MANT_DIG 53
#endif
#ifndef DBL_EPSILON
#define DBL_EPSILON 2.2204460492503131e-16
#endif
#ifdef HAVE_INFINITY
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}};
#else
const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}};
#endif
#ifdef HAVE_NAN
#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}};
#else
const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}};
#endif
#ifndef HAVE_ROUND
double
round(double x)
{
double f;
if (x > 0.0) {
f = floor(x);
x = f + (x - f >= 0.5);
}
else if (x < 0.0) {
f = ceil(x);
x = f - (f - x >= 0.5);
}
return x;
}
#endif
static VALUE fix_uminus(VALUE num);
static VALUE fix_mul(VALUE x, VALUE y);
static VALUE int_pow(long x, unsigned long y);
static ID id_coerce, id_div;
#define id_to_i idTo_i
#define id_eq idEq
#define id_cmp idCmp
VALUE rb_cNumeric;
VALUE rb_cFloat;
VALUE rb_cInteger;
VALUE rb_cFixnum;
VALUE rb_eZeroDivError;
VALUE rb_eFloatDomainError;
static ID id_to, id_by;
void
rb_num_zerodiv(void)
{
rb_raise(rb_eZeroDivError, "divided by 0");
}
/* experimental API */
int
rb_num_to_uint(VALUE val, unsigned int *ret)
{
#define NUMERR_TYPE 1
#define NUMERR_NEGATIVE 2
#define NUMERR_TOOLARGE 3
if (FIXNUM_P(val)) {
long v = FIX2LONG(val);
#if SIZEOF_INT < SIZEOF_LONG
if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
#endif
if (v < 0) return NUMERR_NEGATIVE;
*ret = (unsigned int)v;
return 0;
}
if (RB_TYPE_P(val, T_BIGNUM)) {
if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
#if SIZEOF_INT < SIZEOF_LONG
/* long is 64bit */
return NUMERR_TOOLARGE;
#else
/* long is 32bit */
if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
*ret = (unsigned int)rb_big2ulong((VALUE)val);
return 0;
#endif
}
return NUMERR_TYPE;
}
#define method_basic_p(klass) rb_method_basic_definition_p(klass, mid)
static inline int
positive_int_p(VALUE num)
{
const ID mid = '>';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cFixnum))
return (SIGNED_VALUE)num > 0;
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (method_basic_p(rb_cBignum))
return BIGNUM_POSITIVE_P(num);
}
return RTEST(rb_funcall(num, mid, 1, INT2FIX(0)));
}
static inline int
negative_int_p(VALUE num)
{
const ID mid = '<';
if (FIXNUM_P(num)) {
if (method_basic_p(rb_cFixnum))
return (SIGNED_VALUE)num < 0;
}
else if (RB_TYPE_P(num, T_BIGNUM)) {
if (method_basic_p(rb_cBignum))
return BIGNUM_NEGATIVE_P(num);
}
return RTEST(rb_funcall(num, mid, 1, INT2FIX(0)));
}
int
rb_num_negative_p(VALUE num)
{
return negative_int_p(num);
}
/*
* call-seq:
* num.coerce(numeric) -> array
*
* If a +numeric is the same type as +num+, returns an array containing
* +numeric+ and +num+. Otherwise, returns an array with both a +numeric+ and
* +num+ represented as Float objects.
*
* This coercion mechanism is used by Ruby to handle mixed-type numeric
* operations: it is intended to find a compatible common type between the two
* operands of the operator.
*
* 1.coerce(2.5) #=> [2.5, 1.0]
* 1.2.coerce(3) #=> [3.0, 1.2]
* 1.coerce(2) #=> [2, 1]
*/
static VALUE
num_coerce(VALUE x, VALUE y)
{
if (CLASS_OF(x) == CLASS_OF(y))
return rb_assoc_new(y, x);
x = rb_Float(x);
y = rb_Float(y);
return rb_assoc_new(y, x);
}
static VALUE
coerce_body(VALUE *x)
{
return rb_funcall(x[1], id_coerce, 1, x[0]);
}
NORETURN(static void coerce_failed(VALUE x, VALUE y));
static void
coerce_failed(VALUE x, VALUE y)
{
rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
(rb_special_const_p(y)? rb_inspect(y) : rb_obj_class(y)),
rb_obj_class(x));
}
static VALUE
coerce_rescue(VALUE *x)
{
coerce_failed(x[0], x[1]);
return Qnil; /* dummy */
}
static VALUE
coerce_rescue_quiet(VALUE *x)
{
return Qundef;
}
static int
do_coerce(VALUE *x, VALUE *y, int err)
{
VALUE ary;
VALUE a[2];
a[0] = *x; a[1] = *y;
if (!rb_respond_to(*y, id_coerce)) {
if (err) {
coerce_rescue(a);
}
return FALSE;
}
ary = rb_rescue(coerce_body, (VALUE)a, err ? coerce_rescue : coerce_rescue_quiet, (VALUE)a);
if (ary == Qundef) {
rb_warn("Numerical comparison operators will no more rescue exceptions of #coerce");
rb_warn("in the next release. Return nil in #coerce if the coercion is impossible.");
return FALSE;
}
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
if (err) {
rb_raise(rb_eTypeError, "coerce must return [x, y]");
} else if (!NIL_P(ary)) {
rb_warn("Bad return value for #coerce, called by numerical comparison operators.");
rb_warn("#coerce must return [x, y]. The next release will raise an error for this.");
}
return FALSE;
}
*x = RARRAY_AREF(ary, 0);
*y = RARRAY_AREF(ary, 1);
return TRUE;
}
VALUE
rb_num_coerce_bin(VALUE x, VALUE y, ID func)
{
do_coerce(&x, &y, TRUE);
return rb_funcall(x, func, 1, y);
}
VALUE
rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
{
if (do_coerce(&x, &y, FALSE))
return rb_funcall(x, func, 1, y);
return Qnil;
}
VALUE
rb_num_coerce_relop(VALUE x, VALUE y, ID func)
{
VALUE c, x0 = x, y0 = y;
if (!do_coerce(&x, &y, FALSE) ||
NIL_P(c = rb_funcall(x, func, 1, y))) {
rb_cmperr(x0, y0);
return Qnil; /* not reached */
}
return c;
}
/*
* Trap attempts to add methods to Numeric objects. Always raises a TypeError.
*
* Numerics should be values; singleton_methods should not be added to them.
*/
static VALUE
num_sadded(VALUE x, VALUE name)
{
ID mid = rb_to_id(name);
/* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
rb_remove_method_id(rb_singleton_class(x), mid);
rb_raise(rb_eTypeError,
"can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
rb_id2str(mid),
rb_obj_class(x));
UNREACHABLE;
}
/*
* Numerics are immutable values, which should not be copied.
*
* Any attempt to use this method on a Numeric will raise a TypeError.
*/
static VALUE
num_init_copy(VALUE x, VALUE y)
{
rb_raise(rb_eTypeError, "can't copy %"PRIsVALUE, rb_obj_class(x));
UNREACHABLE;
}
/*
* call-seq:
* +num -> num
*
* Unary Plus---Returns the receiver's value.
*/
static VALUE
num_uplus(VALUE num)
{
return num;
}
/*
* call-seq:
* num.i -> Complex(0,num)
*
* Returns the corresponding imaginary number.
* Not available for complex numbers.
*/
static VALUE
num_imaginary(VALUE num)
{
return rb_complex_new(INT2FIX(0), num);
}
/*
* call-seq:
* -num -> numeric
*
* Unary Minus---Returns the receiver's value, negated.
*/
static VALUE
num_uminus(VALUE num)
{
VALUE zero;
zero = INT2FIX(0);
do_coerce(&zero, &num, TRUE);
return rb_funcall(zero, '-', 1, num);
}
/*
* call-seq:
* num.fdiv(numeric) -> float
*
* Returns float division.
*/
static VALUE
num_fdiv(VALUE x, VALUE y)
{
return rb_funcall(rb_Float(x), '/', 1, y);
}
/*
* call-seq:
* num.div(numeric) -> integer
*
* Uses +/+ to perform division, then converts the result to an integer.
* +numeric+ does not define the +/+ operator; this is left to subclasses.
*
* Equivalent to <code>num.divmod(numeric)[0]</code>.
*
* See Numeric#divmod.
*/
static VALUE
num_div(VALUE x, VALUE y)
{
if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
}
/*
* call-seq:
* num.modulo(numeric) -> real
*
* x.modulo(y) means x-y*(x/y).floor
*
* Equivalent to <code>num.divmod(numeric)[1]</code>.
*
* See Numeric#divmod.
*/
static VALUE
num_modulo(VALUE x, VALUE y)
{
return rb_funcall(x, '-', 1,
rb_funcall(y, '*', 1,
rb_funcall(x, rb_intern("div"), 1, y)));
}
/*
* call-seq:
* num.remainder(numeric) -> real
*
* x.remainder(y) means x-y*(x/y).truncate
*
* See Numeric#divmod.
*/
static VALUE
num_remainder(VALUE x, VALUE y)
{
VALUE z = rb_funcall(x, '%', 1, y);
if ((!rb_equal(z, INT2FIX(0))) &&
((negative_int_p(x) &&
positive_int_p(y)) ||
(positive_int_p(x) &&
negative_int_p(y)))) {
return rb_funcall(z, '-', 1, y);
}
return z;
}
/*
* call-seq:
* num.divmod(numeric) -> array
*
* Returns an array containing the quotient and modulus obtained by dividing
* +num+ by +numeric+.
*
* If <code>q, r = * x.divmod(y)</code>, then
*
* q = floor(x/y)
* x = q*y+r
*
* The quotient is rounded toward -infinity, as shown in the following table:
*
* a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
* ------+-----+---------------+---------+-------------+---------------
* 13 | 4 | 3, 1 | 3 | 1 | 1
* ------+-----+---------------+---------+-------------+---------------
* 13 | -4 | -4, -3 | -4 | -3 | 1
* ------+-----+---------------+---------+-------------+---------------
* -13 | 4 | -4, 3 | -4 | 3 | -1
* ------+-----+---------------+---------+-------------+---------------
* -13 | -4 | 3, -1 | 3 | -1 | -1
* ------+-----+---------------+---------+-------------+---------------
* 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
* ------+-----+---------------+---------+-------------+---------------
* 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
* ------+-----+---------------+---------+-------------+---------------
* -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
* ------+-----+---------------+---------+-------------+---------------
* -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
*
*
* Examples
*
* 11.divmod(3) #=> [3, 2]
* 11.divmod(-3) #=> [-4, -1]
* 11.divmod(3.5) #=> [3, 0.5]
* (-11).divmod(3.5) #=> [-4, 3.0]
* (11.5).divmod(3.5) #=> [3, 1.0]
*/
static VALUE
num_divmod(VALUE x, VALUE y)
{
return rb_assoc_new(num_div(x, y), num_modulo(x, y));
}
/*
* call-seq:
* num.real? -> true or false
*
* Returns +true+ if +num+ is a Real number. (i.e. not Complex).
*/
static VALUE
num_real_p(VALUE num)
{
return Qtrue;
}
/*
* call-seq:
* num.integer? -> true or false
*
* Returns +true+ if +num+ is an Integer (including Fixnum and Bignum).
*
* (1.0).integer? #=> false
* (1).integer? #=> true
*/
static VALUE
num_int_p(VALUE num)
{
return Qfalse;
}
/*
* call-seq:
* num.abs -> numeric
* num.magnitude -> numeric
*
* Returns the absolute value of +num+.
*
* 12.abs #=> 12
* (-34.56).abs #=> 34.56
* -34.56.abs #=> 34.56
*
* Numeric#magnitude is an alias of Numeric#abs.
*/
static VALUE
num_abs(VALUE num)
{
if (negative_int_p(num)) {
return rb_funcall(num, rb_intern("-@"), 0);
}
return num;
}
/*
* call-seq:
* num.zero? -> true or false
*
* Returns +true+ if +num+ has a zero value.
*/
static VALUE
num_zero_p(VALUE num)
{
if (rb_equal(num, INT2FIX(0))) {
return Qtrue;
}
return Qfalse;
}
/*
* call-seq:
* num.nonzero? -> self or nil
*
* Returns +self+ if +num+ is not zero, +nil+ otherwise.
*
* This behavior is useful when chaining comparisons:
*
* a = %w( z Bb bB bb BB a aA Aa AA A )
* b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
* b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
*/
static VALUE
num_nonzero_p(VALUE num)
{
if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
return Qnil;
}
return num;
}
/*
* call-seq:
* num.to_int -> integer
*
* Invokes the child class's +to_i+ method to convert +num+ to an integer.
*
* 1.0.class => Float
* 1.0.to_int.class => Fixnum
* 1.0.to_i.class => Fixnum
*/
static VALUE
num_to_int(VALUE num)
{
return rb_funcall(num, id_to_i, 0, 0);
}
/********************************************************************
*
* Document-class: Float
*
* Float objects represent inexact real numbers using the native
* architecture's double-precision floating point representation.
*
* Floating point has a different arithmetic and is an inexact number.
* So you should know its esoteric system. see following:
*
* - http://docs.sun.com/source/806-3568/ncg_goldberg.html
* - http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
* - http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
*/
VALUE
rb_float_new_in_heap(double d)
{
NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
flt->float_value = d;
OBJ_FREEZE(flt);
return (VALUE)flt;
}
/*
* call-seq:
* float.to_s -> string
*
* Returns a string containing a representation of self. As well as a fixed or
* exponential form of the +float+, the call may return +NaN+, +Infinity+, and
* +-Infinity+.
*/
static VALUE
flo_to_s(VALUE flt)
{
char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve);
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value))
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
}
return s;
}
/*
* call-seq:
* float.coerce(numeric) -> array
*
* Returns an array with both a +numeric+ and a +float+ represented as Float
* objects.
*
* This is achieved by converting a +numeric+ to a Float.
*
* 1.2.coerce(3) #=> [3.0, 1.2]
* 2.5.coerce(1.1) #=> [1.1, 2.5]
*/
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
/*
* call-seq:
* -float -> float
*
* Returns float, negated.
*/
static VALUE
flo_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
/*
* call-seq:
* float + other -> float
*
* Returns a new float which is the sum of +float+ and +other+.
*/
static VALUE
flo_plus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
/*
* call-seq:
* float - other -> float
*
* Returns a new float which is the difference of +float+ and +other+.
*/
static VALUE
flo_minus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
/*
* call-seq:
* float * other -> float
*
* Returns a new float which is the product of +float+ and +other+.
*/
static VALUE
flo_mul(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '*');
}
}
/*
* call-seq:
* float / other -> float
*
* Returns a new float which is the result of dividing +float+ by +other+.
*/
static VALUE
flo_div(VALUE x, VALUE y)
{
long f_y;
double d;
if (RB_TYPE_P(y, T_FIXNUM)) {
f_y = FIX2LONG(y);
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
d = rb_big2dbl(y);
return DBL2NUM(RFLOAT_VALUE(x) / d);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '/');
}
}
/*
* call-seq:
* float.fdiv(numeric) -> float
* float.quo(numeric) -> float
*
* Returns <code>float / numeric</code>, same as Float#/.
*/
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
static void
flodivmod(double x, double y, double *divp, double *modp)
{
double div, mod;
if (isnan(y)) {
/* y is NaN so all results are NaN */
if (modp) *modp = y;
if (divp) *divp = y;
return;
}
if (y == 0.0) rb_num_zerodiv();
if ((x == 0.0) || (isinf(y) && !isinf(x)))
mod = x;
else {
#ifdef HAVE_FMOD
mod = fmod(x, y);
#else
double z;
modf(x/y, &z);
mod = x - z * y;
#endif
}
if (isinf(x) && !isinf(y))
div = x;
else
div = (x - mod) / y;
if (y*mod < 0) {
mod += y;
div -= 1.0;
}
if (modp) *modp = mod;
if (divp) *divp = div;
}
/*
* Returns the modulo of division of x by y.
* An error will be raised if y == 0.
*/
double
ruby_float_mod(double x, double y)
{
double mod;
flodivmod(x, y, 0, &mod);
return mod;
}
/*
* call-seq:
* float % other -> float
* float.modulo(other) -> float
*
* Return the modulo after division of +float+ by +other+.
*
* 6543.21.modulo(137) #=> 104.21
* 6543.21.modulo(137.24) #=> 92.9299999999996
*/
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
static VALUE
dbl2ival(double d)
{
d = round(d);
if (FIXABLE(d)) {
return LONG2FIX((long)d);
}
return rb_dbl2big(d);
}
/*
* call-seq:
* float.divmod(numeric) -> array
*
* See Numeric#divmod.
*
* 42.0.divmod 6 #=> [7, 0.0]
* 42.0.divmod 5 #=> [8, 2.0]
*/
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}