-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbetti.py
51 lines (45 loc) · 1.45 KB
/
betti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from utils import *
import dataIO as io
import argparse
from skimage import filters
import torch
import torch.nn as nn
parser = argparse.ArgumentParser(description='Betti')
parser.add_argument('--input', type=str,
default="E:/data/Tokushima/Lung/all/patch/rank/filename.txt",
help='File path of input images')
parser.add_argument('--patch_side', type=int, default=9,
help='how long patch side for input')
parser.add_argument('--num_of_data', type=int, default=500,
help='number of dataset')
args = parser.parse_args()
# set path
num = args.num_of_data
patch_side = args.patch_side
data_path = args.input
out_path = os.path.dirname(args.input)
os.makedirs(out_path, exist_ok=True)
# get data
data = get_dataset(data_path, patch_side, num)
tensor = torch.from_numpy(data)
m = nn.ConstantPad3d(1, 1.0)
frm_t = m(tensor.view(num, 1, patch_side, patch_side, patch_side))
frm_d = frm_t.view(num, patch_side + 2, patch_side + 2, patch_side + 2).numpy()
c = 0
for i in trange(num):
# img
img = data[i]
frm = frm_d[i]
# thresholding
th = filters.threshold_otsu(img)
# th = 0.5
bin = thresh(img, th)
frm_bin = thresh(frm, th)
# compute betti
betti = compute_Betti_bumbers(bin, th)
betti_f = compute_Betti_bumbers(frm_bin, th)
if betti == [1, 0, 0, 0] and betti_f == [1, 2, 1, 0]:
c += 1
# print(c)
print(i)
display_slices(img)