-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenprimes-sieve.hpp
134 lines (134 loc) · 4.4 KB
/
genprimes-sieve.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include <iostream>
#ifndef GENPRIMES_SIEVE_HPP
#define GENPRIMES_SIEVE_HPP 1
#include <algorithm>
#include <limits>
#include <vector>
#include <cmath>
#include <cassert>
template<typename T>
static T floor_isqrt(T v) {
T lo = 0;
static const T limit = std::floor(std::sqrt(static_cast<long double>(std::numeric_limits<T>::max())));
T hi = std::min(static_cast<T>(v/2 + (v&1)), limit);
while(lo < hi) {
T mid = lo + (hi - lo)/2 + ((hi - lo) & 1);
if (mid*mid > v)
hi = mid - 1;
else
lo = mid;
}
return lo;
}
template<typename T>
static T ceil_isqrt(T v) {
T lo = 0;
static const T limit = std::ceil(std::sqrt(static_cast<long double>(std::numeric_limits<T>::max())));
T hi = std::min(static_cast<T>(v/2 + 1), limit);
while(lo < hi) {
T mid = lo + (hi - lo)/2;
if (mid*mid < v)
lo = mid + 1;
else
hi = mid;
}
return lo;
}
// generate primes up to maxv
template<typename T>
static std::vector<T> genprimes(T maxv, T segsize) {
// time complexity = O(n log log n)
// space complexity = O(sqrt(n)) [bits]
// result size = O(n/ln n)
if (maxv < 3)
segsize = 0;
else {
if (2*segsize + 3 > maxv)
segsize = (maxv - 3)/2 + 1;
}
#if 0
if (maxv > 3) {
auto logn = sizeof(int)*8 - 1 - __builtin_clz(maxv);
auto lnn = logn*77/111; // 77/111 =~ ln 2
primes.reserve(maxv/lnn);
}
#endif
std::vector<bool> segment(segsize);
//clog << "segs " << segsize << endl;
std::vector<T> primes;
if (maxv >= 2)
primes.push_back(2);
// regular sieve for first segment
for (T n = 3, nsq = n*n, i = 0; i < segsize; ++i, nsq += 4*n + 4, n += 2)
if (!segment[i])
for (T j = (nsq - 3)/2; j < segsize; j += n)
segment[j] = true;
for (T i = 0; i < segsize; ++i)
if (!segment[i])
primes.push_back(2*i + 3);
std::vector<T> idx;
idx.reserve(primes.size());
//std::clog << primes.size() << '\n';
idx.push_back(-1);
// generate next segments
for (T segstart = segsize; 2*segstart + 3 <= maxv; ) {
segsize = std::min(segsize, (maxv - (2*segstart + 3))/2 + 1);
segment.clear();
segment.resize(segsize);
auto segend = segstart + segsize;
// segment[i] represent number 2*(segstart+i) + 3
// number n has index (n - 3)/2 - segstart
for (size_t i = 1; i < primes.size(); ++i) {
auto p = primes[i];
if (i == idx.size()) {
auto k = (p*p - 3)/2;
if (k >= segend)
break;
if (k < segstart)
k = k + (segstart - k + p - 1)/p*p;
idx.push_back(k);
}
auto j = idx[i] - segstart;
for (; j < segsize; j += p)
segment[j] = true;
idx[i] = segstart + j;
}
// minimum sq = ((2*ss + 3)^2 - 3) / 2 = (2^2*ss^2+2*2*ss*3+3^2-3)/2 =
// = 2*ss^2 + 2*ss*3 + 3
// ss = k*size, k >= 1
// send = (k+1)*size = k*size + size
// sq = 2*ss^2 + 2*ss*3 + 3 = 2*(k*size)^2 + 6 * (k*size) + 3
// = 2*k^2*size*size + 6*k*size + 3 = (5*k*size + 3 + (2*k^2*size - 1)*size) + size + k*size > send
//assert(((2*segstart + 3)*(2*segstart + 3) - 3)/2 >= segend);
for (T i = 0; i < segsize; ++i)
if (!segment[i])
primes.push_back(2*(i + segstart) + 3);
segstart = segend;
}
//std::clog << segment.capacity() << ' ' << idx.size() << '\n';
return primes;
}
template<typename T>
static auto genprimes(T maxv) {
return genprimes(maxv, (std::max<T>(3, floor_isqrt(maxv)) - 3)/2 + 1);
}
template<typename T>
static std::vector<T> genprimes_simple(T maxv) {
// time complexity = O(n log log n)
// space complexity = O(n) [bits]
// result size = O(n/ln n)
const T segsize = (std::max<T>(maxv, 3) - 3)/2 + 1;
std::vector<bool> segment(segsize);
std::vector<T> primes;
if (maxv >= 2)
primes.push_back(2);
for (T n = 3, nsq = n*n, i = 0; i < segsize; ++i, nsq += 4*n + 4, n += 2)
if (!segment[i])
for (T j = (nsq - 3)/2; j < segsize; j += n)
segment[j] = true;
for (T i = 0; i < segsize; ++i)
if (!segment[i])
primes.push_back(2*i + 3);
return primes;
}
#endif // GENPRIMES_SIEVE_HPP