-
Notifications
You must be signed in to change notification settings - Fork 0
/
62.unique-paths.go
101 lines (96 loc) · 1.75 KB
/
62.unique-paths.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
* @lc app=leetcode id=62 lang=golang
*
* [62] Unique Paths
*
* https://leetcode.com/problems/unique-paths/description/
*
* algorithms
* Medium (51.94%)
* Likes: 2867
* Dislikes: 195
* Total Accepted: 438.5K
* Total Submissions: 836.2K
* Testcase Example: '3\n2'
*
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in
* the diagram below).
*
* The robot can only move either down or right at any point in time. The robot
* is trying to reach the bottom-right corner of the grid (marked 'Finish' in
* the diagram below).
*
* How many possible unique paths are there?
*
*
* Above is a 7 x 3 grid. How many possible unique paths are there?
*
*
* Example 1:
*
*
* Input: m = 3, n = 2
* Output: 3
* Explanation:
* From the top-left corner, there are a total of 3 ways to reach the
* bottom-right corner:
* 1. Right -> Right -> Down
* 2. Right -> Down -> Right
* 3. Down -> Right -> Right
*
*
* Example 2:
*
*
* Input: m = 7, n = 3
* Output: 28
*
*
*
* Constraints:
*
*
* 1 <= m, n <= 100
* It's guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.
*
*
*/
// @lc code=start
func uniquePaths(m int, n int) int {
return dp(m, n)
}
//math 排列组合
func permutation(m, n int) int {
if m == 1 && n == 1 {
return 1
}
result := 1
temp := 1
if m > n {
m, n = n, m
}
//A(m-1,m+n-2)
for i := n; i <= m+n-2; i++ {
result *= i
}
for i := 1; i <= m-1; i++ {
temp *= i
}
return result / temp
}
//dp
func dp(m, n int) int {
ndp := make([][]int, m)
for i := 0; i < m; i++ {
ndp[i] = make([]int, n)
for j := 0; j < n; j++ {
if i == 0 || j == 0 {
ndp[i][j] = 1
} else {
ndp[i][j] = ndp[i][j-1] + ndp[i-1][j]
}
}
}
return ndp[m-1][n-1]
}
// @lc code=end