-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrafiber.py
101 lines (94 loc) · 4.3 KB
/
rafiber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
import matplotlib.pyplot as plt
import pickle
from exp2fem import Fiber
from cleandata.convert import CleanFiber
from constants import (FIBER_TOT_NUM, FIBER_MECH_ID, MARKER_LIST, COLOR_LIST,
LS_LIST, MS)
from fitlnp import fit_whole_fiber, stress2response
class RelaxAdapt(Fiber):
def __init__(self, fiber_id, make_plot=False):
Fiber.__init__(self, fiber_id, make_plot)
# Generate the data from experiment and model
self.get_stim_block_trace_exp()
self.get_stim_block_trace_fem()
self.aggregate_fr_exp()
def aggregate_fr_exp(self):
for i, stim_group in enumerate(self.stim_group_dict):
self.stim_group_dict[i]['spike_time_aggregate'] = []
self.stim_group_dict[i]['spike_fr_aggregate'] = []
self.stim_group_dict[i]['spike_isi_aggregate'] = []
for traces_exp in stim_group['traces_exp']:
self.stim_group_dict[i]['spike_time_aggregate'].extend(
traces_exp['spike_time'])
self.stim_group_dict[i]['spike_fr_aggregate'].extend(
traces_exp['spike_fr'])
self.stim_group_dict[i]['spike_isi_aggregate'].extend(
traces_exp['spike_isi'])
# Remove the off-response
indices = np.array(
self.stim_group_dict[i]['spike_time_aggregate']) <= 5
self.stim_group_dict[i]['spike_time_aggregate'] = np.array(
self.stim_group_dict[i]['spike_time_aggregate'])[indices]
self.stim_group_dict[i]['spike_fr_aggregate'] = np.array(
self.stim_group_dict[i]['spike_fr_aggregate'])[indices]
self.stim_group_dict[i]['spike_isi_aggregate'] = np.array(
self.stim_group_dict[i]['spike_isi_aggregate'])[indices]
def plot_inst_fr(self):
n = int(np.sqrt(len(self.stim_group_dict)))
fig, axs = plt.subplots(n, n, figsize=(3.27 * n, 3 * n))
for i, stim_group in enumerate(self.stim_group_dict):
axes = axs.ravel()[i]
axes.plot(stim_group['spike_time_aggregate'],
stim_group['spike_fr_aggregate'],
'.', color='.5', label='Experiment')
response = stress2response(
self.lnp_params[:2], self.lnp_params[2:],
stim_group['traces_fem']['stress'],
stim_group['traces_fem']['time'])
axes.plot(stim_group['traces_fem']['time'],
response, '-k', label='Model')
axes.set_title('Displacement = %.3f mm' % (
stim_group['static_displ'].mean() / 1000))
axes.set_xlim(0, 5)
axes.set_ylabel('IFR (Hz)')
axes.set_xlabel('Time (s)')
axs[0, 0].legend(loc=1)
fig.tight_layout()
return fig, axs
if __name__ == '__main__':
# Switches
make_plot = False
run_fiber = False
plot_fit = True
# %% Run the fibers
if run_fiber:
# Instantiate fibers
relaxAdaptList = []
for i in range(FIBER_TOT_NUM):
relaxAdapt = RelaxAdapt(i, make_plot=make_plot)
relaxAdaptList.append(relaxAdapt)
# Construct the fit_input_list to be fitted
fit_input_list = []
for stim_group in relaxAdapt.stim_group_dict:
fit_input_list.append({
'stress': stim_group['traces_fem']['stress'],
'time': stim_group['traces_fem']['time'],
'target_time': stim_group['spike_time_aggregate'],
'target_response': stim_group['spike_fr_aggregate']})
relaxAdapt.lnp_params, relaxAdapt.lnp_mean_r2 = fit_whole_fiber(
fit_input_list)
with open('./pickles/relaxAdaptList.pkl', 'wb') as f:
pickle.dump(relaxAdaptList, f)
np.savetxt('./csvs/lnp_params_%d.csv' % i, relaxAdapt.lnp_params,
delimiter=',')
else:
with open('./pickles/relaxAdaptList.pkl', 'rb') as f:
relaxAdaptList = pickle.load(f)
# %% Plot again
if plot_fit:
for i, relaxAdapt in enumerate(relaxAdaptList):
fig, axs = relaxAdapt.plot_inst_fr()
fig.savefig('./plots/relaxadapt/lnp_fitting_#%d.png' % i)
plt.close(fig)
# %% Do something