-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDeltaAdaGrad.py
375 lines (318 loc) · 12.7 KB
/
DeltaAdaGrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import torch
from torch import Tensor
from torch.optim.optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _view_as_real,
_default_to_fused_or_foreach, _get_scalar_dtype, _differentiable_doc,
_foreach_doc, _maximize_doc)
from typing import List, Optional
__all__ = ["DeltaAdaGrad"]
MAX_GPI_VALUE = 0.1
MIN_GPI_VALUE = 0.001
class DeltaAdaGrad(Optimizer):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
foreach: Optional[bool] = None,
*,
maximize: bool = False,
differentiable: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= lr_decay:
raise ValueError(f"Invalid lr_decay value: {lr_decay}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if not 0.0 <= initial_accumulator_value:
raise ValueError(
f"Invalid initial_accumulator_value value: {initial_accumulator_value}"
)
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
defaults = dict(
lr=lr,
lr_decay=lr_decay,
eps=eps,
weight_decay=weight_decay,
initial_accumulator_value=initial_accumulator_value,
foreach=foreach,
maximize=maximize,
differentiable=differentiable,
)
super().__init__(params, defaults)
for group in self.param_groups:
for p in group["params"]:
state = self.state[p]
state["step"] = torch.tensor(0.0, dtype=_get_scalar_dtype())
init_value = (
complex(initial_accumulator_value, initial_accumulator_value)
if torch.is_complex(p)
else initial_accumulator_value
)
state["sum"] = torch.full_like(
p, init_value, memory_format=torch.preserve_format
)
self.prev_loss = None
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("foreach", None)
group.setdefault("maximize", False)
group.setdefault("differentiable", False)
state_values = list(self.state.values())
step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
state_values[0]["step"]
)
if not step_is_tensor:
for s in state_values:
s["step"] = torch.tensor(float(s["step"]), dtype=_get_scalar_dtype())
# def share_memory(self):
# for group in self.param_groups:
# for p in group["params"]:
# state = self.state[p]
# state["sum"].share_memory_()
def _init_group(self, group, params_with_grad, grads, state_sums, state_steps):
has_sparse_grad, has_complex = False, False
for p in group["params"]:
if p.grad is not None:
has_sparse_grad |= p.grad.is_sparse
has_complex |= torch.is_complex(p)
params_with_grad.append(p)
grads.append(p.grad)
state = self.state[p]
state_sums.append(state["sum"])
state_steps.append(state["step"])
return has_sparse_grad, has_complex
@_use_grad_for_differentiable
def step(self, closure=None, loss=None):
"""Perform a single optimization step.
Args:
closure (Callable, optional): A closure that reevaluates the model
and returns the loss.
"""
if closure is not None:
with torch.enable_grad():
loss = closure()
if loss is None:
raise RuntimeError("DeltaAdaGrad requires loss to be specified.")
loss = loss.to("cpu").detach()
for group in self.param_groups:
params_with_grad = []
grads = []
state_sums = []
state_steps = []
has_sparse_grad, has_complex = self._init_group(group, params_with_grad, grads, state_sums, state_steps)
deltaadagrad(
params_with_grad,
grads,
state_sums,
state_steps,
loss,
prev_loss=self.prev_loss,
lr=group["lr"],
weight_decay=group["weight_decay"],
lr_decay=group["lr_decay"],
eps=group["eps"],
has_sparse_grad=has_sparse_grad,
foreach=group["foreach"],
maximize=group["maximize"],
differentiable=group["differentiable"],
has_complex=has_complex,
)
self.prev_loss = loss
return loss
def deltaadagrad(
params: List[Tensor],
grads: List[Tensor],
state_sums: List[Tensor],
state_steps: List[Tensor],
loss: Tensor,
prev_loss: Tensor = None,
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
# setting these as kwargs for now as functional API is compiled by torch/distributed/optim
has_sparse_grad: bool = None,
foreach: Optional[bool] = None,
differentiable: bool = False,
has_complex: bool = False,
*,
lr: float,
weight_decay: float,
lr_decay: float,
eps: float,
maximize: bool,
):
if not all(isinstance(t, torch.Tensor) for t in state_steps):
raise RuntimeError(
"API has changed, `state_steps` argument must contain a list of singleton tensors"
)
if foreach is None:
_, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
if foreach and torch.jit.is_scripting():
raise RuntimeError("torch.jit.script not supported with foreach optimizers")
if foreach and not torch.jit.is_scripting():
func = _multi_tensor_adagrad
else:
# func = _single_tensor_adagrad
raise RuntimeError("DeltaAdaGrad does not support single tensor")
func(
params,
grads,
state_sums,
state_steps,
loss,
prev_loss,
lr=lr,
weight_decay=weight_decay,
lr_decay=lr_decay,
eps=eps,
has_sparse_grad=has_sparse_grad,
maximize=maximize,
differentiable=differentiable,
has_complex=has_complex,
)
# def _make_sparse(grad, grad_indices, values):
# size = grad.size()
# if grad_indices.numel() == 0 or values.numel() == 0:
# return torch.empty_like(grad)
# return torch.sparse_coo_tensor(grad_indices, values, size)
# def _single_tensor_adagrad(
# params: List[Tensor],
# grads: List[Tensor],
# state_sums: List[Tensor],
# state_steps: List[Tensor],
# *,
# lr: float,
# weight_decay: float,
# lr_decay: float,
# eps: float,
# has_sparse_grad: bool,
# maximize: bool,
# differentiable: bool,
# has_complex: bool,
# ):
# for (param, grad, state_sum, step_t) in zip(params, grads, state_sums, state_steps):
# # update step
# step_t += 1
# step = _get_value(step_t)
# grad = grad if not maximize else -grad
# if weight_decay != 0:
# if grad.is_sparse:
# raise RuntimeError(
# "weight_decay option is not compatible with sparse gradients"
# )
# grad = grad.add(param, alpha=weight_decay)
# clr = lr / (1 + (step - 1) * lr_decay)
# if grad.is_sparse:
# grad = grad.coalesce() # the update is non-linear so indices must be unique
# grad_indices = grad._indices()
# grad_values = grad._values()
# state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2)))
# std = state_sum.sparse_mask(grad)
# std_values = std._values().sqrt_().add_(eps)
# param.add_(
# _make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr
# )
# else:
# is_complex = torch.is_complex(param)
# if is_complex:
# grad = torch.view_as_real(grad)
# state_sum = torch.view_as_real(state_sum)
# param = torch.view_as_real(param)
# state_sum.addcmul_(grad, grad, value=1)
# if differentiable:
# std = state_sum.sqrt() + eps
# else:
# std = state_sum.sqrt().add_(eps)
# param.addcdiv_(grad, std, value=-clr)
# if is_complex:
# param = torch.view_as_complex(param)
# state_sum = torch.view_as_complex(state_sum)
def _multi_tensor_adagrad(
params: List[Tensor],
grads: List[Tensor],
state_sums: List[Tensor],
state_steps: List[Tensor],
loss: Tensor,
prev_loss: Tensor = None,
*,
lr: float,
weight_decay: float,
lr_decay: float,
eps: float,
has_sparse_grad: bool,
maximize: bool,
differentiable: bool,
has_complex: bool,
):
assert not differentiable, "_foreach ops don't support autograd"
# Foreach functions will throw errors if given empty lists
if len(params) == 0:
return
delta = torch.sub(loss, prev_loss) if prev_loss is not None else loss
grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype([params, grads, state_sums, state_steps])
for ((device_params, device_grads, device_state_sums, device_state_steps), _) in grouped_tensorlists.values():
# device_has_sparse_grad = has_sparse_grad and any(grad.is_sparse for grad in device_grads)
# if device_has_sparse_grad:
# _single_tensor_adagrad(
# device_params,
# device_grads,
# device_state_sums,
# device_state_steps,
# lr=lr,
# weight_decay=weight_decay,
# lr_decay=lr_decay,
# eps=eps,
# has_sparse_grad=True,
# maximize=False,
# differentiable=differentiable,
# has_complex=has_complex,
# )
# continue
# Handle complex parameters
if has_complex:
_view_as_real(device_params, device_grads, device_state_sums)
if maximize:
device_grads = torch._foreach_neg(device_grads)
# Update steps
# If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
# and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
# wrapped it once now. The alpha is required to assure we go to the right overload.
if device_state_steps[0].is_cpu:
torch._foreach_add_(device_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
else:
torch._foreach_add_(device_state_steps, 1)
if weight_decay != 0:
# Re-use the intermediate memory (device_grads) already allocated for maximize
if maximize:
torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
else:
device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)
grads_norm = [torch.norm(device_grad) for device_grad in device_grads]
grads_norm = [grad_norm / (1 + delta) for grad_norm in grads_norm]
all_grads_sum = [torch.sum(device_state_sum) for device_state_sum in device_state_sums]
gpi = [grad_norm / all_grad_sum if all_grad_sum.item() != 0 else grad_norm for grad_norm, all_grad_sum in zip(grads_norm, all_grads_sum)]
gpi = torch.stack(gpi)
gpi = torch.mean(gpi)
gpi = torch.clamp(gpi, MIN_GPI_VALUE, MAX_GPI_VALUE)
# Bug?
# I think this line should be:
# minus_clr = [-lr / (1 + (_get_value(step - 1) * lr_decay)) for step in device_state_steps]
# But the original code is:
# minus_clr = [(-lr) / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps]
# -----
# -lr' = -(lr / (1 + (step - 1) * lr_decay))
minus_clr = [(-lr * (gpi)) / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps]
# G += g * g
torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1)
# sqrt(G)
std = torch._foreach_sqrt(device_state_sums)
# sqrt(G) + eps
torch._foreach_add_(std, eps)
# (-lr') * g
torch._foreach_mul_(device_grads, minus_clr)
# param += (-lr' * g) / (sqrt(G) + eps)
torch._foreach_addcdiv_(device_params, device_grads, std)