-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathkalman.py
84 lines (61 loc) · 2.65 KB
/
kalman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import sys
import numpy as np
import cv2 as cv
from math import cos, sin, sqrt
import numpy as np
def main():
img_height = 500
img_width = 500
kalman = cv.KalmanFilter(2, 1, 0)
code = -1
cv.namedWindow("Kalman")
while True:
state = 0.1 * np.random.randn(2, 1)
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
kalman.measurementMatrix = 1. * np.ones((1, 2))
kalman.processNoiseCov = 1e-5 * np.eye(2)
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
kalman.errorCovPost = 1. * np.ones((2, 2))
kalman.statePost = 0.1 * np.random.randn(2, 1)
while True:
def calc_point(angle):
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
state_angle = state[0, 0]
state_pt = calc_point(state_angle)
prediction = kalman.predict()
predict_angle = prediction[0, 0]
predict_pt = calc_point(predict_angle)
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
# generate measurement
measurement = np.dot(kalman.measurementMatrix, state) + measurement
measurement_angle = measurement[0, 0]
measurement_pt = calc_point(measurement_angle)
# plot points
def draw_cross(center, color, d):
cv.line(img,
(center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
color, 1, cv.LINE_AA, 0)
cv.line(img,
(center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
color, 1, cv.LINE_AA, 0)
img = np.zeros((img_height, img_width, 3), np.uint8)
draw_cross(np.int32(state_pt), (255, 255, 255), 3)
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
draw_cross(np.int32(predict_pt), (0, 255, 0), 3)
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv.LINE_AA, 0)
cv.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv.LINE_AA, 0)
kalman.correct(measurement)
process_noise = sqrt(kalman.processNoiseCov[0,0]) * np.random.randn(2, 1)
state = np.dot(kalman.transitionMatrix, state) + process_noise
cv.imshow("Kalman", img)
code = cv.waitKey(100)
if code != -1:
break
if code in [27, ord('q'), ord('Q')]:
break
print('Done')
if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()