-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
51 lines (29 loc) · 1.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import numpy as np
import argparse
from PIL import Image
import level1, ela
from model import IMDModel
def infer(img_path, model, device):
print("Performing Level 1 analysis...")
level1.findMetadata(img_path=img_path)
print("Performing Level 2 analysis...")
ela.ELA(img_path=img_path)
img = Image.open("temp/ela_img.jpg")
img = img.resize((128,128))
img = np.array(img, dtype=np.float32).transpose(2,0,1)/255.0
img = np.expand_dims(img, axis=0)
out = model(torch.from_numpy(img).to(device=device))
y_pred = torch.max(out, dim=1)[1]
print("Prediction:",end=' ')
print("Authentic" if y_pred else "Tampared") # auth -> 1 and tp -> 0
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Image Manipulation Detection')
req_args = parser.add_argument_group('Required Args')
req_args.add_argument('-p', '--path', type=str, metavar='img_path', dest='img_path', required=True, help='Image Path')
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #selecting device
print("Working on",device)
model_path = "model/model_c1.pth"
model = torch.load(model_path)
infer(model=model, img_path=args.img_path, device=device)