-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_OCA.py
140 lines (110 loc) · 4.4 KB
/
train_OCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from accelerate import Accelerator
from utils.schedulers import get_policy
from utils.getters import get_model, get_optimizer
from utils.net_utils import LabelSmoothing
from dataset import SubImageCIFAR100
from trainers import OCATrainer, build_feature_dict
from collections import Counter
import tqdm
import torch.nn as nn
import torch
from typing import Dict
from argparse import ArgumentParser
import torch.nn.functional as F
import yaml
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def main(config: Dict) -> None:
"""Run training.
:param config: A dictionary with all configurations to run training.
:return:
"""
torch.backends.cudnn.benchmark = True
model = get_model(config.get('arch_params'))
accelerator = Accelerator()
device = accelerator.device
old_model = get_model(config.get('old_arch_params'))
old_model.load_state_dict(torch.load(config.get('old_model_path'))['model_state_dict'])
if torch.cuda.is_available():
model = torch.nn.DataParallel(model)
old_model = torch.nn.DataParallel(old_model)
model.to(device)
old_model.to(device)
trainer = OCATrainer()
optimizer = get_optimizer(model, **config.get('optimizer_params'))
data = SubImageCIFAR100(**config.get('dataset_params'))
lr_policy = get_policy(optimizer, **config.get('lr_policy_params'))
train_loader = data.train_loader
val_loader = data.val_loader
optimizer, train_loader, val_loader =\
accelerator.prepare(optimizer, train_loader, val_loader)
if config.get('label_smoothing') is None:
criterion = nn.CrossEntropyLoss()
else:
criterion = LabelSmoothing(smoothing=config.get('label_smoothing'))
print("==>Preparing pesudo classifier and FeatureDict OLD")
old_model = accelerator.prepare(old_model)
old_model = old_model.eval().to(device)
num_classes = int(config.get('arch_params')['num_classes'])
embedding_dim = int(config.get('arch_params')['embedding_dim_old'])
pseudo_classifier = torch.zeros(
num_classes, embedding_dim, requires_grad=False)
label_count = Counter()
for i, (paths, (images, target)) in tqdm.tqdm(
enumerate(data.train_loader), ascii=True, total=len(data.train_loader)
):
images = images.to(device, non_blocking=True)
target = target.cpu()
with torch.no_grad():
outputs = old_model(images)
features = outputs[1]
for feature, label in zip(features, target):
pseudo_classifier[int(label)] += feature.flatten().cpu()
label_count.update([int(label)])
for i in range(num_classes):
pseudo_classifier[i] = pseudo_classifier[i]/label_count[i]
pseudo_classifier = pseudo_classifier.to(device)
old_model = old_model.cpu()
model = accelerator.prepare(model)
print(':====>Training')
# Training loop
for epoch in range(config.get('epochs')):
lr_policy(epoch, iteration=None)
train_loss, train_loss_bct, train_loss_ce, train_loss_cosine = trainer.train(
train_loader=train_loader,
model=model,
criterion=criterion,
optimizer=optimizer,
device=device,
accelerator=accelerator,
pseudo_classifier=pseudo_classifier,
)
print(
"Train: epoch = {}, Loss = {}, Loss_bct = {}, Loss_ce = {},Loss_cosine = {}".format(
epoch, train_loss, train_loss_bct, train_loss_ce, train_loss_cosine
))
test_loss, test_acc1 = trainer.validate(
val_loader=data.val_loader,
model=model,
criterion=criterion,
device=device
)
print(
"Test: epoch = {}, Loss = {}, Top1 = {}".format(
epoch, test_loss, test_acc1
))
if (epoch+1) % 5 == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.module.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': train_loss,
}, config.get('output_model_path'))
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--config', type=str, required=True,
help='Path to config file for this pipeline.')
args = parser.parse_args()
with open(args.config) as f:
read_config = yaml.safe_load(f)
main(read_config)