forked from castacks/tartanvo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvo_trajectory_from_folder.py
109 lines (92 loc) · 4.63 KB
/
vo_trajectory_from_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from torch.utils.data import DataLoader
from Datasets.utils import ToTensor, Compose, CropCenter, dataset_intrinsics, DownscaleFlow, plot_traj, visflow
from Datasets.tartanTrajFlowDataset import TrajFolderDataset
from Datasets.transformation import ses2poses_quat
from evaluator.tartanair_evaluator import TartanAirEvaluator
from TartanVO import TartanVO
import argparse
import numpy as np
import cv2
from os import mkdir
from os.path import isdir
def get_args():
parser = argparse.ArgumentParser(description='HRL')
parser.add_argument('--batch-size', type=int, default=1,
help='batch size (default: 1)')
parser.add_argument('--worker-num', type=int, default=1,
help='data loader worker number (default: 1)')
parser.add_argument('--image-width', type=int, default=640,
help='image width (default: 640)')
parser.add_argument('--image-height', type=int, default=448,
help='image height (default: 448)')
parser.add_argument('--model-name', default='',
help='name of pretrained model (default: "")')
parser.add_argument('--euroc', action='store_true', default=False,
help='euroc test (default: False)')
parser.add_argument('--kitti', action='store_true', default=False,
help='kitti test (default: False)')
parser.add_argument('--kitti-intrinsics-file', default='',
help='kitti intrinsics file calib.txt (default: )')
parser.add_argument('--test-dir', default='',
help='test trajectory folder where the RGB images are (default: "")')
parser.add_argument('--pose-file', default='',
help='test trajectory gt pose file, used for scale calculation, and visualization (default: "")')
parser.add_argument('--save-flow', action='store_true', default=False,
help='save optical flow (default: False)')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
testvo = TartanVO(args.model_name)
# load trajectory data from a folder
datastr = 'tartanair'
if args.kitti:
datastr = 'kitti'
elif args.euroc:
datastr = 'euroc'
else:
datastr = 'tartanair'
focalx, focaly, centerx, centery = dataset_intrinsics(datastr)
if args.kitti_intrinsics_file.endswith('.txt') and datastr=='kitti':
focalx, focaly, centerx, centery = load_kiiti_intrinsics(args.kitti_intrinsics_file)
transform = Compose([CropCenter((args.image_height, args.image_width)), DownscaleFlow(), ToTensor()])
testDataset = TrajFolderDataset(args.test_dir, posefile = args.pose_file, transform=transform,
focalx=focalx, focaly=focaly, centerx=centerx, centery=centery)
testDataloader = DataLoader(testDataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.worker_num)
testDataiter = iter(testDataloader)
motionlist = []
testname = datastr + '_' + args.model_name.split('.')[0]
if args.save_flow:
flowdir = 'results/'+testname+'_flow'
if not isdir(flowdir):
mkdir(flowdir)
flowcount = 0
while True:
try:
sample = testDataiter.next()
except StopIteration:
break
motions, flow = testvo.test_batch(sample)
motionlist.extend(motions)
if args.save_flow:
for k in range(flow.shape[0]):
flowk = flow[k].transpose(1,2,0)
np.save(flowdir+'/'+str(flowcount).zfill(6)+'.npy',flowk)
flow_vis = visflow(flowk)
cv2.imwrite(flowdir+'/'+str(flowcount).zfill(6)+'.png',flow_vis)
flowcount += 1
poselist = ses2poses_quat(np.array(motionlist))
# calculate ATE, RPE, KITTI-RPE
if args.pose_file.endswith('.txt'):
evaluator = TartanAirEvaluator()
results = evaluator.evaluate_one_trajectory(args.pose_file, poselist, scale=True, kittitype=(datastr=='kitti'))
if datastr=='euroc':
print("==> ATE: %.4f" %(results['ate_score']))
else:
print("==> ATE: %.4f,\t KITTI-R/t: %.4f, %.4f" %(results['ate_score'], results['kitti_score'][0], results['kitti_score'][1]))
# save results and visualization
plot_traj(results['gt_aligned'], results['est_aligned'], vis=False, savefigname='results/'+testname+'.png', title='ATE %.4f' %(results['ate_score']))
np.savetxt('results/'+testname+'.txt',results['est_aligned'])
else:
np.savetxt('results/'+testname+'.txt',poselist)