-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdqn.py
375 lines (296 loc) · 12.8 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import numpy as np
import gymnasium as gym
import random
from datetime import datetime
import math
import matplotlib.pyplot as plt
from IPython.display import clear_output
from collections import namedtuple, deque
import os
import glob
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using \"{DEVICE}\" device.")
# Render_mode set to rgb_array to allow dqn network to run on images
env = gym.make("FrozenLake-v1", render_mode='rgb_array')
env.reset()
# Use a global plot to support live rendering
FIG, AX = plt.subplots()
IMG = AX.imshow(env.render())
plt.show(block=False)
def render_env(env, title=None):
"""
Render environment image.
:param env: Frozenlake environment
:return: None
"""
if title:
FIG.suptitle(title)
IMG.set_data(env.render())
FIG.canvas.draw()
plt.pause(0.0001)
def render_state(env, state_idx, transforms):
"""
Render state image.
:param env: Frozenlake environment
:param state_idx: Index of the state, range is 0-15
:param transforms: Transform the image before return
:return: None
"""
image = extract_state_img(env, state_idx, transforms).permute(1,2,0)
plt.imshow(image, cmap='gray')
def extract_state_img(env, state_idx, transforms):
"""
Extracts the state image from the environment image.
:param env: Frozenlake environment
:param state_idx: Index of the state, range is 0-15
:param transforms: Transform the image before return
:return: Image of shape CxHxW
"""
# Convert env rgb array to tensor
env = torch.tensor(env.render())
block_size = env.shape[0] // 4
# Extract state from given index
env = env.permute(2, 0, 1)
env = transforms(env)
env = env.permute(1, 2, 0)
start_idx = (state_idx // 4) * block_size
end_idx = (state_idx % 4) * block_size
state_img = env[start_idx:(start_idx + block_size + 2 * PADDING), end_idx:(end_idx + block_size + 2 * PADDING), :]
state_img = state_img.permute(2, 0, 1).type(torch.float)
return state_img
# Constants used throughout the code
ACTION_SPACE_SIZE = env.action_space.n
STATE_SPACE_SIZE = env.observation_space.n
PADDING = 20
TAU = 0.0005
GAMMA = 0.99
LR = 1e-4
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
TRANSFORMS = torchvision.transforms.Compose([
torchvision.transforms.Pad(padding=PADDING, fill=255),
torchvision.transforms.Grayscale(1),
torchvision.transforms.Lambda(lambda x: x/255.0),
])
IMG_WIDTH = extract_state_img(env, state_idx=9, transforms=TRANSFORMS).shape[1]
"""
Replay Memory
"""
Transition = namedtuple('Transition',
('state', 'action', 'reward', 'next_state'))
class ReplayMemory(object):
def __init__(self, capacity, batch_size):
self.capacity = capacity
self.batch_size = batch_size
self.memory = deque([], maxlen=capacity)
def push(self, *args):
self.memory.append(Transition(*args))
def sample(self):
if (len(self.memory) < self.batch_size):
return None
return random.sample(self.memory, self.batch_size)
def __len__(self):
return len(self.memory)
"""
DQN Architecture
"""
class DQN(nn.Module):
def __init__(self, n_observations, n_actions):
super(DQN, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=8, stride=4),
nn.ReLU(True),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(True),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU(True),
nn.Flatten(),
nn.Linear(9 * 9 * 64, 512),
nn.ReLU(True),
nn.Linear(512, n_actions),
)
def forward(self, x):
return self.model(x)
"""
DQN Agent
"""
class Agent():
def __init__(self, env, policy_net, target_net, optimizer):
self.env = env
self.policy_net = policy_net
self.target_net = target_net
self.optimizer = optimizer
self.memory = ReplayMemory(capacity=10_000, batch_size=128)
self.tau = TAU
self.gamma = GAMMA
self.checkpoint_freq = 100
def train(self, n_episodes, n_steps, exploration_rate=1.0, resume_training=False, pretrained_model=None):
"""
Train a model with the following params
:param n_episodes: Total episodes to train for
:param n_steps: Total steps or actions before each episode is terminated
:param save_dir: Directory where model is save at each checkpoint
:param exploration_rate: Rate between exploration and exploitation
:param resume_training: Set to True to continue training from last checkpoint saved in save_dir
:return: None
"""
if resume_training:
self.load_model(pretrained_model)
for episode in range(n_episodes):
# Save model every 20 episodes
if (episode > 0 and episode % self.checkpoint_freq == 0):
self.save_model(episode)
state, info = self.env.reset()
print(f"Episode: {episode}")
for step in range(n_steps):
state_img = extract_state_img(self.env, state, transforms=TRANSFORMS).to(DEVICE)
# Select an action via explore vs exploit
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1 * episode / EPS_DECAY)
if sample > eps_threshold or resume_training:
with torch.no_grad():
action = torch.argmax(self.policy_net(state_img.unsqueeze(dim=0))).item()
else:
action = self.env.action_space.sample()
# Execute action, observe reward, and store experience
next_state, reward, terminated, truncated, _ = self.env.step(action)
# If done
done = terminated or truncated
if terminated:
next_state = None
title = f"Episode:{episode} Step: {step}"
render_env(self.env, title)
self.memory.push(state, action, reward, next_state)
state = next_state
# Optimize model
self.optimize_model()
# Soft update target network's weights
policy_net_dict = self.policy_net.state_dict()
target_net_dict = self.target_net.state_dict()
for key in policy_net_dict:
target_net_dict[key] = policy_net_dict[key] * self.tau + target_net_dict[key] * (1 - self.tau)
self.target_net.load_state_dict(target_net_dict)
# Done
if done:
break;
def test(self, n_episodes=100, n_steps=10, pretrained_model=None):
"""
Test a pretrained model
:param n_episodes: Total episodes to test for
:param n_steps: Total steps or actions before each episode is terminated
:param model_dir: Directory where model is saved
:return: None
"""
if pretrained_model:
# Automatically load the latest saved model in the directory
self.load_model(pretrained_model)
n_success = 0
n_failures = 0
for episode in range(n_episodes):
state, info = self.env.reset()
for step in range(n_steps):
state_img = extract_state_img(self.env, state, transforms=TRANSFORMS).to(DEVICE)
action = torch.argmax(self.policy_net(state_img.unsqueeze(dim=0))).item()
next_state, reward, terminated, truncated, _ = self.env.step(action)
if (reward > 0):
n_success += 1
elif (reward == 0 and terminated):
n_failures += 1
done = terminated or truncated
if terminated:
next_state = None
title = f"Episode: {episode}, Step: {step}"
render_env(self.env, title)
state = next_state
if done:
break
print(f"Accuracy: {n_success/n_episodes}")
print(f"Failures: {n_failures/n_episodes}")
print(f"Truncations: {(n_episodes - n_success - n_failures)/n_episodes}")
def optimize_model(self):
"""
Optimize the model based on loss between policy net and target net
:params: None
:return: None
"""
# Sample random batch of states
transitions = self.memory.sample()
if transitions is None:
return
batch = Transition(*zip(*transitions))
reward_batch = torch.tensor([reward for reward in batch.reward]).to(DEVICE)
action_batch = torch.tensor([action for action in batch.action]).to(DEVICE)
action_batch = torch.reshape(action_batch, (self.memory.batch_size, 1))
# Get Q values predicted by the policy net
current_state_imgs = torch.zeros(size=(len(batch.state), 1, IMG_WIDTH, IMG_WIDTH), dtype=torch.float).to(DEVICE)
for i, state in enumerate(batch.state):
current_state_imgs[i] = extract_state_img(self.env, state, transforms=TRANSFORMS)
predicted_q_values = self.policy_net(current_state_imgs).gather(1, action_batch)
# Get Q values as predicted by the target net
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=DEVICE, dtype=torch.bool)
non_final_next_states = torch.tensor([s for s in batch.next_state if s is not None]).to(DEVICE)
next_state_imgs = torch.zeros(size=(len(non_final_next_states), 1, IMG_WIDTH, IMG_WIDTH), dtype=torch.float).to(DEVICE)
for i, state in enumerate(non_final_next_states):
next_state_imgs[i] = extract_state_img(self.env, state, transforms=TRANSFORMS)
expected_q_values = torch.zeros(size=(len(batch.state),)).to(DEVICE)
with torch.no_grad():
expected_q_values[non_final_mask] = self.target_net(next_state_imgs).max(1)[0]
expected_q_values = (expected_q_values * self.gamma) + reward_batch
expected_q_values = expected_q_values.unsqueeze(1)
# Compute loss
criterion = nn.SmoothL1Loss()
loss = criterion(predicted_q_values, expected_q_values)
# Optimize model
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.policy_net.parameters(), 100)
self.optimizer.step()
def save_model(self, checkpoint_num):
"""
Save a model
:param dir: Directory where the model is to be saved
:param checkpoint_num: Include a checkpoint number in the model's name
:return: None
"""
# Set up path
timestamp = int(datetime.now().timestamp())
filename = "model_" + str(checkpoint_num) + "_" + str(timestamp) + ".pt"
path = os.path.join('checkpoints', filename)
# Save state dicts for policy and target net
torch.save({
'policy_net_state_dict': self.policy_net.state_dict(),
'target_net_state_dict': self.target_net.state_dict(),
'optim_state_dict': self.optimizer.state_dict(),
}, path)
def load_model(self, filename):
"""
Load a model
:param dir: Directory where the model is saved
:return: None
"""
# Load model
state_dicts = torch.load(filename, map_location=DEVICE)
self.policy_net.load_state_dict(state_dicts['policy_net_state_dict'])
self.target_net.load_state_dict(state_dicts['target_net_state_dict'])
self.optimizer.load_state_dict(state_dicts['optim_state_dict'])
# Put models in eval mode
self.policy_net.eval()
self.target_net.eval()
# DQN Networks
policy_net = DQN(IMG_WIDTH * IMG_WIDTH, ACTION_SPACE_SIZE).to(DEVICE)
target_net = DQN(IMG_WIDTH * IMG_WIDTH, ACTION_SPACE_SIZE).to(DEVICE)
optimizer = torch.optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
target_net.load_state_dict(policy_net.state_dict())
# Initialize
env.reset()
dqn_trainer = Agent(env, policy_net, target_net, optimizer)
# Train
# dqn_trainer.train(20000, 10, resume_training=False)
# Test
dqn_trainer.test(n_episodes=100, n_steps=20, pretrained_model='model_best.pt')