-Concrete ML is a Privacy-Preserving Machine Learning (PPML) open-source set of tools built on top of [Concrete](https://github.com/zama-ai/concrete) by [Zama](https://github.com/zama-ai). It aims to simplify the use of fully homomorphic encryption (FHE) for data scientists to help them automatically turn machine learning models into their homomorphic equivalent. Concrete ML was designed with ease-of-use in mind, so that data scientists can use it without knowledge of cryptography. Notably, the Concrete ML model classes are similar to those in scikit-learn and it is also possible to convert PyTorch models to FHE.
+Concrete ML is a Privacy-Preserving Machine Learning (PPML) open-source set of tools built on top of [Concrete](https://github.com/zama-ai/concrete) by [Zama](https://github.com/zama-ai). It simplifies the use of fully homomorphic encryption (FHE) for data scientists to help them automatically turn machine learning models into their homomorphic equivalent. Concrete ML was designed with ease-of-use in mind, so that data scientists can use it without knowledge of cryptography. Notably, the Concrete ML model classes are similar to those in scikit-learn and it is also possible to convert PyTorch models to FHE.
## Main features.
-Data scientists can use models with APIs which are close to the frameworks they use, with additional options to run inferences in FHE.
+Data scientists can use models with APIs which are close to the frameworks they use, while additional options to those models allow them to run inference or training on encrypted data with FHE.
Concrete ML features:
@@ -154,6 +154,8 @@ Various tutorials are given for [built-in models](docs/built-in-models/ml_exampl
- [Health diagnosis](use_case_examples/disease_prediction/): based on a patient's symptoms, history and other health factors, give
a diagnosis using FHE to preserve the privacy of the patient.
+- [Private inference for federated learned models](use_case_examples/federated_learning/): private training of a Logistic Regression model and then import the model into Concrete ML and perform encrypted prediction
+
- [Titanic](use_case_examples/titanic/KaggleTitanic.ipynb): solve the [Kaggle Titanic competition](https://www.kaggle.com/c/titanic/). Implemented with XGBoost from Concrete ML, this example comes as a companion of the [Kaggle notebook](https://www.kaggle.com/code/concretemlteam/titanic-with-privacy-preserving-machine-learning), and was the subject of a blogpost in [KDnuggets](https://www.kdnuggets.com/2022/08/machine-learning-encrypted-data.html).
- [Sentiment analysis with transformers](use_case_examples/sentiment_analysis_with_transformer): predict if an encrypted tweet / short message is positive, negative or neutral, using FHE. The [live interactive](https://huggingface.co/spaces/zama-fhe/encrypted_sentiment_analysis) demo is available on Hugging Face. This [blog post](https://huggingface.co/blog/sentiment-analysis-fhe) explains how this demo works!
diff --git a/docs/README.md b/docs/README.md
index 4ef70a86e..0a4a44f09 100644
--- a/docs/README.md
+++ b/docs/README.md
@@ -4,10 +4,13 @@
![](.gitbook/assets/3.png)
-Concrete ML is an open source, privacy-preserving, machine learning inference framework based on Fully Homomorphic Encryption (FHE). It enables data scientists without any prior knowledge of cryptography to automatically turn machine learning models into their FHE equivalent, using familiar APIs from scikit-learn and PyTorch (see how it looks for [linear models](built-in-models/linear.md), [tree-based models](built-in-models/tree.md), and [neural networks](built-in-models/neural-networks.md)).
+Concrete ML is an open source, privacy-preserving, machine learning framework based on Fully Homomorphic Encryption (FHE). It enables data scientists without any prior knowledge of cryptography to automatically turn machine learning models into their FHE equivalent, using familiar APIs from scikit-learn and PyTorch (see how it looks for [linear models](built-in-models/linear.md), [tree-based models](built-in-models/tree.md), and [neural networks](built-in-models/neural-networks.md)). Concrete ML supports converting models for inference with FHE but can also [train some models](built-in-models/training.md) on encrypted data.
Fully Homomorphic Encryption is an encryption technique that allows computing directly on encrypted data, without needing to decrypt it. With FHE, you can build private-by-design applications without compromising on features. You can learn more about FHE in [this introduction](https://www.zama.ai/post/tfhe-deep-dive-part-1) or by joining the [FHE.org](https://fhe.org) community.
+Training on encrypted data provides the highest level of privacy but is slower than training on clear data. Federated learning is an alternative approach, where data privacy can be ensured by using a trusted gradient aggregator, coupled with optional _differential privacy_ instead of encryption. Concrete ML
+can import linear models, including logistic regression, that are trained using federated learning using the [`from_sklearn` function](./built-in-models/linear.md#pre-trained-models).
+
## Example usage
Here is a simple example of classification on encrypted data using logistic regression. More examples can be found [here](built-in-models/ml_examples.md).
@@ -86,11 +89,11 @@ This example shows the typical flow of a Concrete ML model:
To make a model work with FHE, the only constraint is to make it run within the supported precision limitations of Concrete ML (currently 16-bit integers). Thus, machine learning models must be quantized, which sometimes leads to a loss of accuracy versus the original model, which operates on plaintext.
-Additionally, Concrete ML currently only supports FHE _inference_. Training has to be done on unencrypted data, producing a model which is then converted to an FHE equivalent that can perform encrypted inference (i.e., prediction over encrypted data).
+Additionally, Concrete ML currently only supports training on encrypted data for some models, while it supports _inference_ for a large variety of models.
Finally, there is currently no support for pre-processing model inputs and post-processing model outputs. These processing stages may involve text-to-numerical feature transformation, dimensionality reduction, KNN or clustering, featurization, normalization, and the mixing of results of ensemble models.
-These issues are currently being addressed, and significant improvements are expected to be released in the coming months.
+These issues are currently being addressed, and significant improvements are expected to be released in the near future.
## Concrete stack
diff --git a/docs/SUMMARY.md b/docs/SUMMARY.md
index fb668d389..330483b41 100644
--- a/docs/SUMMARY.md
+++ b/docs/SUMMARY.md
@@ -16,6 +16,7 @@
- [Neural Networks](built-in-models/neural-networks.md)
- [Nearest Neighbors](built-in-models/nearest-neighbors.md)
- [Pandas](built-in-models/pandas.md)
+- [Encrypted training](built-in-models/training.md)
- [Built-in Model Examples](built-in-models/ml_examples.md)
## Deep Learning
diff --git a/docs/advanced-topics/advanced_features.md b/docs/advanced-topics/advanced_features.md
index cc9fccbe7..d30180a9b 100644
--- a/docs/advanced-topics/advanced_features.md
+++ b/docs/advanced-topics/advanced_features.md
@@ -6,25 +6,25 @@ Concrete ML provides features for advanced users to adjust cryptographic paramet
Concrete ML makes use of table lookups (TLUs) to represent any non-linear operation (e.g., a sigmoid). TLUs are implemented through the Programmable Bootstrapping (PBS) operation, which applies a non-linear operation in the cryptographic realm.
-The result of TLU operations is obtained with a specific error probability. Concrete ML offers the possibility to set this error probability, which influences the cryptographic parameters. The higher the success rate, the more restrictive the parameters become. This can affect both key generation and, more significantly, FHE execution time.
+The result of TLU operations is obtained with a specific tolerance to off-by-one errors. Concrete ML offers the possibility to set the probability of such errors occurring, which influences the cryptographic parameters. The lower the tolerance, the more restrictive the parameters become, making both key generation and, more significantly, FHE execution time slower.
{% hint style="info" %}
Concrete ML has a _simulation_ mode where the impact of approximate computation of TLUs on the model accuracy can be determined. The simulation is much faster, speeding up model development significantly. The behavior in simulation mode is representative of the behavior of the model on encrypted data.
{% endhint %}
-In Concrete ML, there are three different ways to define the error probability:
+In Concrete ML, there are three different ways to define the tolerance to off-by-one errors for each TLU operation:
-- setting `p_error`, the error probability of an individual TLU (see [here](advanced_features.md#an-error-probability-for-an-individual-tlu))
-- setting `global_p_error`, the error probability of the full circuit (see [here](advanced_features.md#a-global-error-probability-for-the-entire-model))
+- setting `p_error`, the error probability of an individual TLU (see [here](advanced_features.md#tolerance-to-off-by-one-error-for-an-individual-tlu))
+- setting `global_p_error`, the error probability of the full circuit (see [here](advanced_features.md#a-global-tolerance-for-one-off-errors-for-the-entire-model))
- not setting `p_error` nor `global_p_error`, and using default parameters (see [here](advanced_features.md#using-default-error-probability))
{% hint style="warning" %}
-`p_error` and `global_p_error` are somehow two concurrent parameters, in the sense they both have an impact on the choice of cryptographic parameters. It is forbidden in Concrete ML to set both `p_error` and `global_p_error` simultaneously.
+`p_error` and `global_p_error` cannot be set at the same time, as they are incompatible with each other.
{% endhint %}
-### An error probability for an individual TLU
+### Tolerance to off-by-one error for an individual TLU
-The first way to set error probabilities in Concrete ML is at the local level, by directly setting the probability of error of each individual TLU. This probability is referred to as `p_error`. A given PBS operation has a `1 - p_error` chance of being successful. The successful evaluation here means that the value decrypted after FHE evaluation is exactly the same as the one that would be computed in the clear.
+The first way to set error probabilities in Concrete ML is at the local level, by directly setting the tolerance to error of each individual TLU operation (such as activation functions for a neuron output). This tolerance is referred to as `p_error`. A given PBS operation has a `1 - p_error` chance of being correct 100% of the time. The successful evaluation here means that the value decrypted after FHE evaluation is exactly the same as the one that would be computed in the clear. Otherwise, off-by-one errors might occur, but, in practice, these errors are not necessarily problematic if they are sufficiently rare.
For simplicity, it is best to use [default options](advanced_features.md#using-default-error-probability), irrespective of the type of model. Especially for deep neural networks, default values may be too pessimistic, reducing computation speed without any improvement in accuracy. For deep neural networks, some TLU errors might not affect the accuracy of the network, so `p_error` can be safely increased (e.g., see CIFAR classifications in [our showcase](../getting-started/showcase.md)).
@@ -63,9 +63,9 @@ clf.compile(X_train, p_error=0.1)
If the `p_error` value is specified and [simulation](compilation.md#fhe-simulation) is enabled, the run will take into account the randomness induced by the choice of `p_error`. This results in statistical similarity to the FHE evaluation.
-### A global error probability for the entire model
+### A global tolerance for one-off-errors for the entire model
-A `global_p_error` is also available and defines the probability of success for the entire model. Here, the `p_error` for every PBS is computed internally in Concrete such that the `global_p_error` is reached.
+A `global_p_error` is also available and defines the probability of 100% correctness for the entire model, compared to execution in the clear. In this case, the `p_error` for every TLU is determined internally in Concrete such that the `global_p_error` is reached for the whole model.
There might be cases where the user encounters a `No cryptography parameter found` error message. Increasing the `p_error` or the `global_p_error` in this case might help.
@@ -78,7 +78,7 @@ Usage is similar to the `p_error` parameter:
clf.compile(X_train, global_p_error=0.1)
```
-In the above example, XGBoostClassifier in FHE has a 1/10 probability to have a shifted output value compared to the expected value. The shift is relative to the expected value, so even if the result is different, it should be **around** the expected value.
+In the above example, XGBoostClassifier in FHE has a 1/10 probability to have a one-off output value compared to the expected value. The shift is relative to the expected value, so even if the result is different, it should be **close** to the expected value.
### Using default error probability
@@ -162,7 +162,7 @@ $$t = L - P$$
Then, the rounding operation can be computed as:
-$$ \mathrm{round\_to\_t\_bits}(x, t) = \left\lfloor \frac{x}{2^t} \right\rceil \cdot 2^t $$
+$$ \mathrm{round\_to\_P\_bits}(x, t) = \left\lfloor \frac{x}{2^t} \right\rceil \cdot 2^t $$
where $$x$$ is the input number, and $$\lfloor \cdot \rceil$$ denotes the operation that rounds to the nearest integer.
diff --git a/docs/advanced_examples/LogisticRegressionTraining.ipynb b/docs/advanced_examples/LogisticRegressionTraining.ipynb
index ef2acb7a3..9c721c9f7 100644
--- a/docs/advanced_examples/LogisticRegressionTraining.ipynb
+++ b/docs/advanced_examples/LogisticRegressionTraining.ipynb
@@ -6,13 +6,19 @@
"source": [
"# Logistic Regression Training\n",
"\n",
- "In this notebook, a logistic regression model is trained using stochastic gradient descent.\n",
- "First a Scikit-Learn model is trained as the baseline, then a Concrete ML quantized model is trained, and then a Concrete ML model is trained on encrypted data using Fully Homomorphic Encryption, first with the simulation mode and then in FHE."
+ "This notebook shows how to train a logistic regression model on encrypted data using stochastic gradient descent (SGD). During this process,\n",
+ "the training set remains encrypted at all times and the gradients and loss are encrypted, thus unaccessible by the server performing the training. \n",
+ "\n",
+ "The result of the encrypted training is a set of encrypted model weights that can only be decrypted by the training set secret-key owner. In Concrete ML the `fit` function encrypts the training data, trains the model producing encrypted weights and then decrypts the weights. The model can then be used in on clear data, or on new encrypted data.\n",
+ "\n",
+ "Training on encrypted data is especially useful when multiple parties collaborate confidentially, meaning they provide encrypted shares of a training set. \n",
+ "\n",
+ "In this notebook, a Scikit-Learn model is first trained as the baseline. Next, a Concrete ML model is trained on encrypted data using Fully Homomorphic Encryption."
]
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -40,14 +46,17 @@
" Z = Z.reshape(xx.shape)\n",
"\n",
" # Define red and blue color map\n",
- " cmap_light = ListedColormap([\"#FFAAAA\", \"#AAAAFF\"])\n",
- " cmap_bold = ListedColormap([\"#FF0000\", \"#0000FF\"])\n",
+ " cm_bright = ListedColormap([\"#FF0000\", \"#0000FF\"])\n",
"\n",
" # Plotting the results\n",
" plt.figure(figsize=(10, 6))\n",
- " plt.contourf(xx, yy, Z, alpha=0.3, cmap=cmap_light)\n",
- " plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor=\"k\", cmap=cmap_bold)\n",
- " plt.title(f\"{title} (Iterations: {n_iterations}, Accuracy: {accuracy})\")\n",
+ " plt.contourf(xx, yy, Z, alpha=0.3, cmap=cm_bright)\n",
+ " plt.scatter(X[:, 0], X[:, 1], c=y, edgecolor=\"k\", cmap=cm_bright)\n",
+ " plt.title(\n",
+ " f\"{title} (Iterations: {n_iterations}, Accuracy: {accuracy})\\n \"\n",
+ " f\"Learned weights: {clf.coef_[0][0]:.3f}, {clf.coef_[0][1]:.3f}, \"\n",
+ " f\"{clf.intercept_.reshape((-1,))[0]:.3f} \"\n",
+ " )\n",
" plt.xlabel(\"Feature 1\")\n",
" plt.ylabel(\"Feature 2\")\n",
"\n",
@@ -78,16 +87,17 @@
"\n",
"\n",
"# Load the Iris dataset\n",
- "X, y = datasets.load_iris(return_X_y=True)\n",
- "X = MinMaxScaler(feature_range=[-1, 1]).fit_transform(X)\n",
+ "Xfull, y = datasets.load_iris(return_X_y=True)\n",
+ "Xfull = MinMaxScaler(feature_range=[-1, 1]).fit_transform(Xfull)\n",
"\n",
"# Select petal length and petal width for visualization\n",
- "X = X[:, 2:4] # Petal length and petal width\n",
+ "X = Xfull[:, 2:4] # Petal length and petal width\n",
"\n",
"# Filter the dataset for binary classification (Versicolor and Virginica)\n",
"# These correspond to target labels 1 and 2 in the Iris dataset\n",
"binary_filter = (y == 1) | (y == 2)\n",
"X_binary = X[binary_filter]\n",
+ "Xfull_binary = Xfull[binary_filter]\n",
"y_binary = y[binary_filter] - 1"
]
},
@@ -95,19 +105,19 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Sklearn Clear Training\n",
+ "## Baseline Scikit-learn Training on Clear Data \n",
"\n",
- "Training of the typical Scikit-Learn baseline."
+ "Training of the typical Scikit-Learn baseline. A Logistic Regression model is trained using SGD. "
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAIjCAYAAADxz9EgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADP40lEQVR4nOzdeXxM1//H8dfMZF8JgliCWFst/VL7WmrfKaqtrXtpqS6qSqubtrpb6qelqrS2UlSL2imqVItWrBG7ICSDkcjM/f2RZJrITlZ5Px+PPMi955753LmTZD5zzv0ck2EYBiIiIiIiIpItzHkdgIiIiIiIyO1ESZaIiIiIiEg2UpIlIiIiIiKSjZRkiYiIiIiIZCMlWSIiIiIiItlISZaIiIiIiEg2UpIlIiIiIiKSjZRkiYiIiIiIZCMlWSIiIiIiItlISZZIHmjRogUtWrRwfr9+/XpMJhMLFy5M97iZM2diMpk4evRozgZ4G7jxOc4P/efl9TOZTAwdOjTXHzc75OfXfYcOHXj88cfzOoxbcvToUUwmEzNnzszrUETylQsXLuDt7c3PP/+c16FIAaQkSyST9uzZQ69evQgODsbDw4MyZcpw//33M3HixDyNa8qUKVl6c5T4hnXHjh05F5RIIfDbb7+xatUqRo4c6dyW2gcmW7Zs4Y033uDSpUt5EOV/vvvuOz799NM8jSE7ffHFFzzwwAOUL18ek8nEwIEDU22X+Dsvta8zZ87cchxTpkzBZDJRv379W+5LYN++fbRr1w4fHx8CAgJ45JFHOHfuXKaOvXz5MsOHD6ds2bK4u7tTo0YNvvjiiwyPe/zxxzGZTHTq1CnZ9mLFivHYY48xZsyYmzoXKdxc8joAkYJgy5YttGzZkvLly/P4449TqlQpjh8/zrZt2/jss8949tlns9TfqlWrbiqORx55hL59++Lu7u7cNmXKFIoXL57mGwzJGTdzDVO7flJwTZgwgVatWlG5cuV0223ZsoVx48YxcOBAihQpkjvBpeK7775j7969DB8+PNn24OBgbDYbrq6ueRPYTXr//fexWq3Uq1eP06dPZ9j+zTffpGLFism2Zcf1mDNnDhUqVGD79u0cOnQow9eDpO3EiRM0a9YMf39/3n33XS5fvsyHH37Inj172L59O25ubmkea7fbadu2LTt27GDIkCFUqVKFlStX8swzz3Dx4kVeffXVVI/bsWMHM2fOxMPDI9X9Tz31FJ9//jlr167lvvvuy5bzlMJBSZZIJrzzzjv4+/vzxx9/pPijHBERkeX+0vtDkR6LxYLFYrmpY/ObuLg4HA7HTT8Xee1m4r6drl9BdvXqVby8vG6pj4iICJYvX87UqVOzKaqsy47zgPippGm9wczPNmzY4BzF8vHxybB9+/btqVu3brbGEBYWxpYtW1i0aBFPPvkkc+bM4fXXX8/Wx8guV65cwdvbO6/DSNe7777LlStX2LlzJ+XLlwegXr163H///cycOZMnnngizWMXLVrEli1bmD59OoMHDwbg6aefplevXrz11ls89thjBAYGJjvGMAyee+45+vfvz5o1a1Ltt0aNGtSsWZOZM2cqyZIs0XRBkUw4fPgwd955Z6qfet74Sxtg9uzZ1KtXDy8vL4oWLUqzZs2SjXxk5n6emJgYOnXqhL+/P1u2bAFS3ptSoUIF/vnnHzZs2OCc/pJd9yGdPHmSwYMHU7JkSdzd3bnzzjuZMWNGsjaxsbGMHTuWOnXq4O/vj7e3N02bNmXdunXJ2iXe8/Hhhx/y6aefEhISgru7O//++y9vvPEGJpOJQ4cOOT/p9/f3Z9CgQVy9ejVTsU6bNo2QkBA8PT2pV68emzZtSrVdTEwMr7/+OpUrV8bd3Z1y5crx8ssvExMTk6LtzVzDiRMncueddzqPqVu3Lt99951zf1r3Fk2ZMoU777wTd3d3goKCGDJkSIqpZS1atKBmzZr8+++/tGzZEi8vL8qUKcMHH3yQqeco0Zw5c6hWrRoeHh7UqVOHjRs3pmiza9cu2rdvj5+fHz4+PrRq1Ypt27Yla5N43W6U2jlWqFCBTp06sXnzZurVq4eHhweVKlVi1qxZKY7/559/uO+++/D09KRs2bK8/fbbOByOFO2WLFlCx44dCQoKwt3dnZCQEN566y3sdnuydonP286dO2nWrBleXl68+uqrDBgwgOLFi3P9+vUUfbdp04Zq1aql+RwCLF++nLi4OFq3bp1uuzfeeIOXXnoJgIoVKzp/TpM+P7Nnz6ZOnTp4enoSEBBA3759OX78eKbOI7PPRYsWLVi+fDnh4eHOGCpUqACkfU/W2rVradq0Kd7e3hQpUoSuXbuyb9++FOeX2Z/fX3/9lSZNmlCkSBF8fHyoVq1aitGFY8eOERoamu5zmig4ODjV12B6rFZritfIrZgzZw5FixalY8eO9OrVizlz5qTa7tKlSzz//PNUqFABd3d3ypYtS//+/Tl//ryzzbVr13jjjTeoWrUqHh4elC5dmh49enD48GHgv6mo69evT9Z3atdv4MCB+Pj4cPjwYTp06ICvry8PPfQQAJs2bXJOs0z8Pfj8889js9lSxB0aGkrv3r0pUaIEnp6eVKtWjdGjRwOwbt06TCYTixcvTnHcd999h8lkYuvWrURFRREaGkpUVFSGz+cPP/xAp06dnAkWQOvWralatSrz589P99jE3/t9+/ZNtr1v375cu3aNJUuWpDjm22+/Ze/evbzzzjvp9n3//fezbNkyDMPI8BxEEmkkSyQTgoOD2bp1K3v37qVmzZrpth03bhxvvPEGjRo14s0338TNzY3ff/+dtWvX0qZNm0w9ns1mo2vXruzYsYPVq1dz7733ptru008/5dlnn8XHx8f5h69kyZJZO7lUnD17lgYNGjiLJZQoUYJffvmFRx99lOjoaOd0o+joaL766isefPBBHn/8caxWK9OnT6dt27Zs376d2rVrJ+v366+/5tq1azzxxBO4u7sTEBDg3Ne7d28qVqzI+PHj+fPPP/nqq68IDAzk/fffTzfW6dOn8+STT9KoUSOGDx/OkSNH6NKlCwEBAZQrV87ZzuFw0KVLFzZv3swTTzxBjRo12LNnD5988gkHDhzgxx9/dLa9mWv45Zdf8txzz9GrVy+GDRvGtWvX2L17N7///jv9+vVLM/433niDcePG0bp1a55++mn279/PF198wR9//MFvv/2WbArXxYsXadeuHT169KB3794sXLiQkSNHctddd9G+fft0nyeI/+R/3rx5PPfcc7i7uzNlyhTatWvH9u3bna/rf/75h6ZNm+Ln58fLL7+Mq6sr//d//0eLFi3YsGHDTd93cujQIXr16sWjjz7KgAEDmDFjBgMHDqROnTrceeedAJw5c4aWLVsSFxfHK6+8gre3N9OmTcPT0zNFfzNnzsTHx4cRI0bg4+PD2rVrGTt2LNHR0UyYMCFZ2wsXLtC+fXv69u3Lww8/TMmSJfH29mbWrFmsXLky2X0YZ86cYe3atRmORmzZsoVixYoRHBycbrsePXpw4MABvv/+ez755BOKFy8OQIkSJYD4UfIxY8bQu3dvHnvsMc6dO8fEiRNp1qwZu3btSvbBTmrnkdnnYvTo0URFRXHixAk++eQTgHRHf1avXk379u2pVKkSb7zxBjabjYkTJ9K4cWP+/PNPZ4KWKKOf33/++YdOnTpx99138+abb+Lu7s6hQ4f47bffkvXTv39/NmzYkCNvZlu2bMnly5dxc3Ojbdu2fPTRR1SpUuWW+pwzZw49evTAzc2NBx980Pmzm/R39uXLl2natCn79u1j8ODB/O9//+P8+fMsXbqUEydOULx4cex2O506dWLNmjX07duXYcOGYbVa+fXXX9m7dy8hISFZji0uLo62bdvSpEkTPvzwQ+eo54IFC7h69SpPP/00xYoVY/v27UycOJETJ06wYMEC5/G7d++madOmuLq68sQTT1ChQgUOHz7MsmXLeOedd2jRogXlypVjzpw5dO/ePcXzEhISQsOGDZk5cyaDBg3i66+/Tnda+8mTJ4mIiEh1tLFevXoZFp+IiYnBYrGkmGWQeN47d+5MVqTGarUycuRIXn31VUqVKpVu33Xq1OGTTz7hn3/+yfA9gIiTISIZWrVqlWGxWAyLxWI0bNjQePnll42VK1casbGxydodPHjQMJvNRvfu3Q273Z5sn8PhcP6/efPmRvPmzZ3fr1u3zgCMBQsWGFar1WjevLlRvHhxY9euXcn6+Prrrw3ACAsLc2678847k/WVkcQ+/vjjjzTbPProo0bp0qWN8+fPJ9vet29fw9/f37h69aphGIYRFxdnxMTEJGtz8eJFo2TJksbgwYOd28LCwgzA8PPzMyIiIpK1f/311w0gWXvDMIzu3bsbxYoVS/dcYmNjjcDAQKN27drJ4pg2bZoBJHtevv32W8NsNhubNm1K1sfUqVMNwPjtt98Mw7j5a9i1a1fjzjvvTDfeG69fRESE4ebmZrRp0ybZY02aNMkAjBkzZiR7PMCYNWuWc1tMTIxRqlQpo2fPnuk+rmEYBmAAxo4dO5zbwsPDDQ8PD6N79+7Obd26dTPc3NyMw4cPO7edOnXK8PX1NZo1a+bclnjdMjpHwzCM4OBgAzA2btzo3BYREWG4u7sbL7zwgnPb8OHDDcD4/fffk7Xz9/dP0WfiazCpJ5980vDy8jKuXbvm3Jb4vE2dOjVZW7vdbpQtW9bo06dPsu0ff/yxYTKZjCNHjqToP6kmTZoYderUSbE96c9yogkTJqSI3zAM4+jRo4bFYjHeeeedZNv37NljuLi4JNue1nkYRuafi44dOxrBwcEp2ib+fH799dfObbVr1zYCAwONCxcuOLf9/fffhtlsNvr37+/cltmf308++cQAjHPnzqV4/KQSzzOrvL29jQEDBqS6b968ecbAgQONb775xli8eLHx2muvGV5eXkbx4sWNY8eOZfmxEu3YscMAjF9//dUwjPjfD2XLljWGDRuWrN3YsWMNwFi0aFGKPhJ/p8yYMcMAjI8//jjNNomvrXXr1iXbn9r1GzBggAEYr7zySor+Unu9jB8/3jCZTEZ4eLhzW7NmzQxfX99k25LGYxiGMWrUKMPd3d24dOmSc1tERITh4uJivP7664Zh/Pc7IWl8qfnjjz9S/I5L9NJLLxlAstfzjT766CMDSPE7/pVXXjEAo1OnTsm2v/jii0bFihWdfQYHBxsdO3ZMte8tW7YYgDFv3rx0z0EkKU0XFMmE+++/n61bt9KlSxf+/vtvPvjgA9q2bUuZMmVYunSps92PP/6Iw+Fg7NixmM3Jf7wyM60lKiqKNm3aEBoayvr161OMBOUGwzD44Ycf6Ny5M4ZhcP78eedX27ZtiYqK4s8//wRI9qmhw+EgMjKSuLg46tat62yTVM+ePZ2f4N/oqaeeSvZ906ZNuXDhAtHR0WnGumPHDiIiInjqqaeSfXo5cOBA/P39k7VdsGABNWrUoHr16snOKXGOfeIUx5u9hkWKFOHEiRP88ccfaba50erVq4mNjWX48OHJHuvxxx/Hz8+P5cuXJ2vv4+PDww8/7Pzezc2NevXqceTIkUw9XsOGDalTp47z+/Lly9O1a1dWrlyJ3W7HbrezatUqunXrRqVKlZztSpcuTb9+/di8eXO61yM9d9xxB02bNnV+X6JECapVq5Ys9p9//pkGDRpQr169ZO0SpzkllXR0y2q1cv78eZo2bcrVq1dTTDdzd3dn0KBBybaZzWYeeughli5ditVqdW6fM2cOjRo1SlEg4UYXLlygaNGiGZx1+hYtWoTD4aB3797JXpOlSpWiSpUqKabdpnYekLXnIjNOnz7NX3/9xcCBA5ONNt99993cf//9qY4oZPTzmzgit2TJklSnfyZav359to9i9e7dm6+//pr+/fvTrVs33nrrLVauXMmFCxcynCaWnjlz5lCyZElatmwJxP9+6NOnD3Pnzk02JfGHH36gVq1aKUZ7Eo9JbFO8ePFUiyhldUpkUk8//XSKbUlfL1euXOH8+fM0atQIwzDYtWsXAOfOnWPjxo0MHjw42dS9G+Pp378/MTExyappzps3j7i4OOfvqoEDB2IYRobFmRKnK6ZWGCjxnsHUpjQm6tevH/7+/gwePJhff/2Vo0ePMm3aNKZMmZLi2AMHDvDZZ58xYcKETBUiSvxZTzq9UyQjSrJEMunee+9l0aJFXLx4ke3btzNq1CisViu9evXi33//BeLv3TKbzdxxxx039RjDhw/njz/+YPXq1c4pVDfDbrdz5syZZF+xsbGZOvbcuXNcunSJadOmUaJEiWRfiW/wkhb7+Oabb7j77rvx8PCgWLFilChRguXLl6c6/z69N643/iFP/KN28eLFNI8JDw8HSDHlx9XVNVmSAHDw4EH++eefFOdUtWrVZOd0s9dw5MiR+Pj4UK9ePapUqcKQIUNSTIVKK/4b7/9xc3OjUqVKzv2JypYtm+INV9GiRdN9jpJKbWpU1apVuXr1KufOnePcuXNcvXo11fuRatSogcPhSHGvUGbdeH0hZezh4eGpxphaPP/88w/du3fH398fPz8/SpQo4XxTd+Nrr0yZMqkWKunfvz82m815T8n+/fvZuXMnjzzySKbO6VaTgYMHD2IYBlWqVEnxuty3b1+KojppnUdWnovMSOt1CfGvg/Pnz3PlypVk2zP6+e3Tpw+NGzfmscceo2TJkvTt25f58+enm3DlpCZNmlC/fn1Wr159U8fb7Xbmzp1Ly5YtCQsL49ChQxw6dIj69etz9uzZZEUUDh8+nOEUs8OHD1OtWjVcXLLvLg4XFxfKli2bYvuxY8ecCbSPjw8lSpSgefPmwH+vl8QPPzKKu3r16tx7773J7kWbM2cODRo0yHKVxcTkL7V7ZK9du5asTWpKlSrF0qVLiYmJoU2bNlSsWJGXXnrJucxK0umxw4YNo1GjRvTs2TNTsSX+rN9KwiuFj+7JEskiNzc37r33Xu69916qVq3KoEGDWLBgQbZUlOratStz587lvffeY9asWSlGUjLr+PHjKRKadevWZaooRuKbnocffpgBAwak2ubuu+8G4m/YHzhwIN26deOll14iMDAQi8XC+PHjnTdrJ5XeH8i0qu5l16faDoeDu+66i48//jjV/Unv37oZNWrUYP/+/fz000+sWLGCH374gSlTpjB27FjGjRt3S30nyunnKCvSerORVlGB7Iz90qVLNG/eHD8/P958801CQkLw8PDgzz//ZOTIkSneuKf1urvjjjuoU6cOs2fPpn///syePRs3Nzd69+6dYQzFihXLdHKbFofDgclk4pdffkn1+bnxnqnUziOrz0VOyej6enp6snHjRtatW8fy5ctZsWIF8+bN47777mPVqlV5UnWzXLly7N+//6aOXbt2LadPn2bu3LnMnTs3xf45c+Zk+h7czMrqz5y7u3uKvyF2u53777+fyMhIRo4cSfXq1fH29ubkyZMMHDjwpl4v/fv3Z9iwYZw4cYKYmBi2bdvGpEmTstxP6dKlAVItx3/69GkCAgIyHHVq1qwZR44cYc+ePVy5coVatWpx6tQpAOcHamvXrmXFihUsWrQoWQGauLg4bDYbR48eJSAgAD8/P+e+xJ/1xHsqRTJDSZbILUi8QTfxj0JISAgOh4N///33pqb6devWjTZt2jBw4EB8fX0ztYhian94S5Uqxa+//ppsW61atTIVQ4kSJfD19cVut2dYOW3hwoVUqlSJRYsWJYsjt0oYJxYdOHjwYLLSutevXycsLCzZOYeEhPD333/TqlWrdD+NvJVr6O3tTZ8+fejTpw+xsbH06NGDd955h1GjRqVaIjsx/v379ycbeYuNjSUsLCzD5z+rDh48mGLbgQMH8PLyck7j9PLySvWNZ2hoKGaz2ZmMJo5UXLp0KVlxhhtH37IiODg41RhvjGf9+vVcuHCBRYsW0axZM+f2sLCwLD9m//79GTFiBKdPn+a7776jY8eOmZoGWL16dX744YdMPUZar7eQkBAMw6BixYrON4BZlZXnIrOfwid9Xd4oNDSU4sWL31QpcLPZTKtWrWjVqhUff/wx7777LqNHj2bdunXZ/lrPjCNHjqQ5fTkjc+bMITAwkMmTJ6fYt2jRIhYvXszUqVPx9PQkJCSEvXv3pttfSEgIv//+O9evX09zvbKkP3NJZeVnbs+ePRw4cIBvvvmG/v37O7ff+Pci8fdRRnFDfPW+ESNG8P333zvXW+vTp0+mY0pUpkwZSpQowY4dO1LsS62QUlosFkuytomjlYmvsWPHjgHxRWludPLkSSpWrMgnn3ySbD25xJ+nGjVqZCoGEdB0QZFMWbduXaqfuCfem5A4raZbt26YzWbefPPNFJ8IZvYT+/79+/P5558zdepURo4cmWF7b2/vFH90PTw8aN26dbKvzN4/YrFY6NmzJz/88EOqf2DPnTuXrC0kP7fff/+drVu3ZuqxblXdunUpUaIEU6dOTTYdcubMmSmek969e3Py5Em+/PLLFP3YbDbn9KebvYYXLlxI9r2bmxt33HEHhmGkWiYc4v/ou7m58fnnnyfre/r06URFRdGxY8c0H+9mbN26Ndm9csePH2fJkiW0adPGuYZXmzZtWLJkSbJPeM+ePct3331HkyZNnJ/uJlY7S1oC/sqVK3zzzTc3HV+HDh3Ytm0b27dvd247d+5cirLYqb3uYmNjnfdeZMWDDz6IyWRi2LBhHDlyJNk9b+lp2LAhFy9ezNT9cIkJyY2vyR49emCxWBg3blyK15ZhGCleU6nJynPh7e2dqemDpUuXpnbt2nzzzTfJYt67dy+rVq2iQ4cOGfZxo8jIyBTbEt8IJ50elpUS7pmV9HdWop9//pmdO3fSrl27LPdns9lYtGgRnTp1olevXim+hg4ditVqdd6v27NnT/7+++9US50nXreePXty/vz5VEeAEtsEBwdjsVhSLLuQldd9aq8XwzD47LPPkrUrUaIEzZo1Y8aMGc6k5MZ4EhUvXpz27dsze/Zs5syZQ7t27ZKN+GSlhHvPnj356aefkk1LXrNmDQcOHOCBBx5wbrt+/TqhoaEZLkJ97tw53n//fe6++25nknXfffexePHiFF8lSpSgbt26LF68mM6dOyfrZ+fOnfj7+9/SNH4pfDSSJZIJzz77LFevXqV79+5Ur16d2NhYtmzZwrx586hQoYLzXqXKlSszevRo3nrrLZo2bUqPHj1wd3fnjz/+ICgoiPHjx2fq8YYOHUp0dDSjR4/G398/zZXqIb607BdffMHbb79N5cqVCQwMzNSCiTNmzGDFihUptg8bNoz33nuPdevWUb9+fR5//HHuuOMOIiMj+fPPP1m9erXzDVOnTp1YtGgR3bt3p2PHjoSFhTF16lTuuOMOLl++nKlzvRWurq68/fbbPPnkk9x333306dOHsLAwvv766xT3ZD3yyCPMnz+fp556inXr1tG4cWPsdjuhoaHMnz+flStXUrdu3Zu+hm3atKFUqVI0btyYkiVLsm/fPiZNmkTHjh3x9fVN9ZgSJUowatQoxo0bR7t27ejSpQv79+9nypQp3HvvvZl+w59ZNWvWpG3btslKuAPJpjO+/fbbzvWMnnnmGVxcXPi///s/YmJikq3J1aZNG8qXL8+jjz7KSy+9hMViYcaMGZQoUSLFm7LMevnll/n2229p164dw4YNc5ZwDw4OZvfu3c52jRo1omjRogwYMIDnnnsOk8nEt99+e1NTD0uUKEG7du1YsGABRYoUyXRi27FjR1xcXFi9enW6C6QCzmIjo0ePpm/fvri6utK5c2dCQkJ4++23GTVqFEePHqVbt274+voSFhbG4sWLeeKJJ3jxxRfT7Tsrz0WdOnWYN28eI0aM4N5778XHxyfFm8lEEyZMoH379jRs2JBHH33UWcLd39+fN954I1PPUVJvvvkmGzdupGPHjgQHBxMREcGUKVMoW7YsTZo0cbbLSgn3ZcuW8ffffwPxb7p3797N22+/DUCXLl2c05obNWrEPffcQ926dfH39+fPP/9kxowZlCtXLsXv1oEDB/LNN98QFhaWokx9osRiKV26dEl1f4MGDShRogRz5syhT58+vPTSSyxcuJAHHniAwYMHU6dOHSIjI1m6dClTp06lVq1a9O/fn1mzZjFixAi2b99O06ZNuXLlCqtXr+aZZ56ha9eu+Pv788ADDzBx4kRMJhMhISH89NNPKe7dS0/16tUJCQnhxRdf5OTJk/j5+fHDDz+kOvX1888/p0mTJvzvf//jiSeeoGLFihw9epTly5fz119/JWvbv39/evXqBcBbb72VbN/ixYszVcId4NVXX2XBggW0bNmSYcOGcfnyZSZMmMBdd92VrOjLyZMnqVGjBgMGDEi2Pljz5s1p2LAhlStX5syZM0ybNo3Lly/z008/OadOli9fPtV7RIcPH07JkiXp1q1bin2//vornTt31j1ZkjW5UMFQpMD75ZdfjMGDBxvVq1c3fHx8DDc3N6Ny5crGs88+a5w9ezZF+xkzZhj33HOP4e7ubhQtWtRo3ry5s8yvYaRfwj2pl19+2QCMSZMmGYaRennsM2fOGB07djR8fX1TlC1PTWIfaX0dP37cMAzDOHv2rDFkyBCjXLlyhqurq1GqVCmjVatWxrRp05x9ORwO49133zWCg4MNd3d345577jF++uknY8CAAclKRSeWGJ4wYUKKeBJLQN9Y2jm1c03LlClTjIoVKxru7u5G3bp1jY0bN6Z4jg0jvuT7+++/b9x5553Oa1OnTh1j3LhxRlRUVLK2Wb2G//d//2c0a9bMKFasmOHu7m6EhIQYL730UrJ+0zqnSZMmGdWrVzdcXV2NkiVLGk8//bRx8eLFZG2aN2+eaon4G5/rtADGkCFDjNmzZxtVqlRxXq8by0EbhmH8+eefRtu2bQ0fHx/Dy8vLaNmypbFly5YU7Xbu3GnUr1/fcHNzM8qXL298/PHHaZZwT600cmrXaPfu3Ubz5s0NDw8Po0yZMsZbb71lTJ8+PUWfv/32m9GgQQPD09PTCAoKci6rwA0lrtN63pKaP3++ARhPPPFEuu1u1KVLF6NVq1bJtqX1s/zWW28ZZcqUMcxmc4pz+eGHH4wmTZoY3t7ehre3t1G9enVjyJAhxv79+zN1Hpl9Li5fvmz069fPKFKkiAE4XzeplQA3DMNYvXq10bhxY8PT09Pw8/MzOnfubPz777/J2mT253fNmjVG165djaCgIMPNzc0ICgoyHnzwQePAgQPJjstKCffEMuWpfSU9l9GjRxu1a9c2/P39DVdXV6N8+fLG008/bZw5cyZFnz179jQ8PT1T/Pwl1blzZ8PDw8O4cuVKmm0GDhxouLq6OpfBuHDhgjF06FCjTJkyhpubm1G2bFljwIAByZbJuHr1qjF69GijYsWKzt+5vXr1Sracwrlz54yePXsaXl5eRtGiRY0nn3zS2Lt3b6ol3L29vVON7d9//zVat25t+Pj4GMWLFzcef/xx4++//071NbB3716je/fuRpEiRQwPDw+jWrVqxpgxY1L0GRMTYxQtWtTw9/c3bDZbsn2ZLeGe9DHbtGljeHl5GUWKFDEeeuihFNcq8TV7Y9n+559/3qhUqZLh7u5ulChRwujXr1+y5y89af2e2rdvnwEYq1evzlQ/IolMhqHlq0VEpPBasmQJ3bp1Y+PGjcnKzGdk06ZNtGjRgtDQ0Fte1Fbyh5IlS9K/f/8UC1pL+uLi4ggKCqJz585Mnz49r8PJVsOHD2fjxo3s3LlTI1mSJUqyRESkUOvUqRP79u3j0KFDWX4T1b59e8qWLZvqvX5SsPzzzz80bNiQI0eOqIpcFiVOh1y/fr2zHPzt4MKFCwQHBzN//vybuhdRCjclWSIiUijNnTuX3bt3M378eD777DOee+65vA5JpED5/fff2b17N2+99RbFixdPdRF6kcJKSZaIiBRKJpMJHx8f+vTpw9SpU7N1IViRwmDgwIHMnj2b2rVrM3PmzAwXLxYpTJRkiYiIiIiIZCOtkyUiIiIiIpKNlGSJiIiIiIhkI01Az4DD4eDUqVP4+vqqdKeIiIiISCFmGAZWq5WgoCDnItepUZKVgVOnTlGuXLm8DkNERERERPKJ48ePU7Zs2TT3K8nKgK+vLwA7dhzHx8cvj6MREREREZG8cvlyNHXrlnPmCGlRkpWBxCmCPj5++PoqyRIRERERKewyuo1IhS9ERERERESykZIsERERERGRbKQkS0REREREJBvpniwRERERkXzAMAwcjjgMw57XoRRaJpMFs9nllpduUpKVScePQ6lSEBCQ15GIiIiIyO3Gbo/l8uXTxMVdRUuz5h3DABcXL3x8SmOxuN10P0qyMst2lYgIP6xWCA7O62BERERE5HZhGA4uXQrD3d1CYGAQrq5ugDKt3Gdw/XosFy6c49KlMAICqmAy3dzdVUqyMqkcJ7iOGavNh/BwL3x9NaolIiIiIrfObo8FHJQsWQ5PT6+8DqdQ8/DwxMXFlWPHwrHbY3Fx8bipfpRkZVLpEnH4GYc5ZStKuK08ETYvrFaUbImIiIjILTOZuOlRE8leJpP5lqdsKsnKrKJFwdeXoMhIiDhGJAFYbT5E2OI/bVCiJSIiIiJ5yWwGi+M6JjdX5zYj9jp2sysORx4GVggpycqqgACCAiAoPH5UK5IAIiICNaolIiIiInnCZAIXU1z8N4sXwcKFcPFi/CBBr15YevbEYoY4wwXDyNtYCwuNSd6s4GCCAuOo6XmYQCISCmNAeHheByYiIiIihYXJBC4WB6xahalsWUx9+8YnWWvWwMKFmPr2xVS2LKxahYvFkWeVC93dTSxZ8mPePHgeUJJ1KwICIDiYmp6HCeaYM9kKD4fIyLwOTkRERERudy6mOFixAlOXLnD2bOqNzp6N379ixX8jXtnozJkzDB/+LNWqVcLX152QkHJ0796ZtWvXZPtj3QzDMBg3bizBwaXx9/ekXbvWHDx4MEcfU0lWdkgyqhXMsWSjWkq2RERERCQnmBPeyZsGDwZ7BgsY2+2YHn002XHZ4ejRozRsWIf169fy3nsT2LlzD8uWraB585YMGzYk+x7oFnz00QdMnvw5EydOZfPm3/H29qZTp7Zcu3Ytxx5TSVZ2SRjVCgqMSzaqFRGhREtEREREsp/FcR1++CHtEawbnTkDixbFH5dNnnvuGUwmE7/9tp3u3XtStWpV7rjjToYPH8GmTdvSPO7VV0dy551VKVLEi2rVKvHGG2O4fv2/uHbv/ps2bVpSrJgvxYv70aBBHXbu3AFAeHg43bt3pmTJohQt6k3t2nfyyy8/p/o4hmEwceKnvPLKa3Tp0pW77rqbGTNmcfr0KZYu/THbnocbqfBFdlNhDBERERHJBm5uGbVwjb//KgtMCxdC796k1XVsbOb7ioyMZNWqFbz55jt4e3un2F+kSJE0j/X19eWrr2ZSunQQe/fu4ZlnHsfHx5cXX3wZgAEDHqJ27Xv4/PMvsFgs7N79F66u8VUThw0bQmxsLGvWbMTLy5t9+/7Fx8cn1ccJCwvjzJkztGrV2rnN39+fevXqs23bVnr37pv5E84CJVk5JTiYoMhIgqyH2WvDWe7daoXg4LwOTkRERERuCxcv5mz7dBw+fAjDMKhWrXqWjx016jXn/ytUqMCBAy+yYMFcZ5J1/PgxRox4ierV4/uuUqWKs/3x48fo3r0nNWveBUClSpXSfJyzZ88AEBhYMtn2wMCSzn05QUlWTgoIgIAAaiYZ1bLafAgP99KoloiIiIikK6NRJTc34su0Z0VC+6yMWKXFuIV68AsWzGPy5M85cuQwly9fJi4uDj8/P+f+YcNG8NRTjzFnzre0atWaHj0eICQkBIAhQ57j2WefZvXqVdx3X2u6d+/JXXfdfcvnk510T1ZuUGEMEREREclmRux1jF69snZMr14YsdlzT1blylUwmUzs3x+apeO2bdvKgAEP0a5dBxYv/onff9/FK6+MJjZJ5jdmzBvs2vUP7dt3ZN26tdSufQdLliwGYPDgxwgNPUK/fo+wd+8eGjasy+TJE1N9rJIlSwEQEZH8vrWIiLPOfTlBSVZuUWEMEREREclGdrMr9OwJJUtm3BigVCno0SP+uGwQEBDA/fe3ZerUyVy5ciXF/kuXLqV63NatWyhfPphXXhlNnTp1qVKlCseOpVxstmrVqgwb9jw//7yKbt168M03Xzv3lStXjieeeIr58xcxfPgLzJjxZaqPVbFiRUqVKpWsnHx0dDTbt/9OgwYNs3jGmackK7cFBBBU3S/Z2loa1RIRERGRrHI44v81ZswAiyX9xhYLxvTpyY7LDp99Nhm73U7jxvVYvPgHDh48yL59+5g06XOaNUs9ialcuQrHjx9j/vy5HD58mEmTPneOUgHYbDaGDRvKhg3rCQ8PZ8uW39ix4w+qV68BwAsvDGfVqpWEhYWxa9efbNiwzrnvRiaTiWefHc57773NsmVL2bt3D4MH96d06SC6dOmWfU/EDXRPVl5RYQwRERERuUVxhgsu7dphLF0avw7WmVSKOZQqFZ9gtWtHnD17x1gqVarEtm1/8t577zBy5AucPn2aEiVKcM89dZg48YtUj+ncuQvPPfc8w4cPJSYmhvbtOzJq1BjefvsNACwWC5GRF3j00f6cPXuW4sWL07VrD8aOHQeA3W5n2LAhnDx5Aj8/P9q0aceECZ+kGeMLL7zMlStXGDLkCS5dukSjRk1YtmwFHh4e2fpcJGUybuWOtUIgOjoaf39/okJD8fP1zZkHCQ//rzAGPuCpwhgiIiIihUVc3DWio8MoX77iTb3xN5nAxRQX/82iRfFl2i9ehKJF4+/Z6tEj/nEMF/TOP2PXrl3j2LEw/Pwq4uKS/HpYrdFUr+5PVFRUskIdN9JIVn6QZFTrlK0o4bbyzlGttPI6JWAiIiIiAmAYcN1wwWwGS7fu0Lv3fztjr2PHJVunCErGlGTlFwnl3oMiIyHimLPcu9WWsqkNL+chIiIikvMMw+Dff3cTGXmeMmXKU6lSlYwPysfsdju7d+/kypXLVKpUlaCgsjfVz+HDBzh16jjFipWgRo27MJlM2RypZIXDAQ5cIVl5dldQgpXrlGTlNwEBBAVAUPjhVHcnTiuMOOGP1equaYUiIiI57Ndff+Ltt0dx6NBe57Y6dZrw5psfU7v2vXkY2c2ZM+dLPvrobc6ePQbEFwZo2bIjb7/9GcHBaS/qmtTOndt4/fUX2LVri3Nb1ap3M2bMe9x3X/sciVukIClQ1QU3btxI586dCQoKwmQy8eOPP2Z4zPr16/nf//6Hu7s7lStXZubMmTkeZ7YIDk71K3G9rUDOJVtvS0RERLLfsmULGDSoC4cPBwErgcPAAnbtukqPHi3YtWt7HkeYNZMmvcfLLz/B2bNNgc3AIQzjSzZs+IdOnRpz8uSxDPvYsWMrPXu25O+/Y4GFxD8nv3DwYAn69+/EihU/5ug5iBQEBSrJunLlCrVq1WLy5MmZah8WFkbHjh1p2bIlf/31F8OHD+exxx5j5cqVORxpDkpYb6tm2UvJ1ttSCXgREZHsdf36dV599TkMoweG8QvQBqgE9MLh2Mz16zV4/fUX8jjKzIuIOMMHH4wFRgKzgcZACPAodvs2oqLMfPTRuAz7ee214djtd+NwbAJ6Ev+ctMMwVgKdeOWVZ4mLi8u5ExEpAApUktW+fXvefvttunfvnqn2U6dOpWLFinz00UfUqFGDoUOH0qtXLz75JO0SjwVGQIBzVCuYYxB1SettiYiIZKN1634hMvIM8AYp3zJ54nC8ws6dmzl0aH/uB3cTFi2ajWG4AK+ksjcQu30IixZ9h812Nc0+QkP3smfPdhyOV4Ebq+BZMIzXOXfuBBs3/pqNkYsUPAUqycqqrVu30rp162Tb2rZty9atW9M8JiYmhujo6GRf+VbCqFZQYBwN/fc5R7UiIpRoiYiI3KoTJ8IxmdyBmmm0qAvAyZMFY97+iRPhWCyVgSJptKjL9evXuHDhXJp9/DedsG4aLe4BTJw4UTCeE5GcclsnWWfOnKFkyZLJtpUsWZLo6GhstlTK9gHjx4/H39/f+VWuXLncCPXWJE4hTBjVCiSCiBMxGtUSERG5BcWKlcAwYoC07lM65GxXEAQEFMfhOA5cS6PFIUwmM/7+RdPtI97BNFqEAUaSdpKbzAnv7N3c/vtKul1yj57yG4waNYqoqCjn1/Hjx/M6pMxTYQwREZFs07p1Jzw9fYGPUtnrwGT6iEqV7uDOO2vncmQ3p1u3ftjtl4Dpqey1YbFM4v77u+Drm/YCq7Vq1aVcuSqYTB8Bqa1q+yHe3kVo1apD9gQtmWIy/ZdILV4MDzwArVvH/7t4cfx2szm+neSO2zrJKlWqFGfPnk227ezZs/j5+eHp6ZnqMe7u7vj5+SX7KlBUGENERCRbeHv78MILY4DPgeFA4gev/2Iy9cUwVvDaa+8WmLWhKlWqwoMPPobJNBx4F7hAfKK0FbO5PRbLUV54YWy6fZjNZsaMGY9h/AT0A0IT9hwDhgJf8NJLr+Pp6ZVj5yHJmUxgscCqVVC2LPTtCwsXwpo18f/27Ru/fdWq+HZ59XJ1dzexZMmPefPgeeC2TrIaNmzImjVrkm379ddfadiwYR5FlItUGENEROSWPfXUi7z22gd4es4AymM2ewJ3UqTIRqZM+Z62bbvmdYhZ8t57XzB48BBcXMYBJTCZPIFGBAWd4PvvV1Cz5j0Z9tGxY08mTpxNkSJrgBoJz0kwXl7f8vrrH/PYY8Ny+CwkKZMJVqyALl3ghrEFp7Nn4/evWJEzSdaZM2cYPvxZqlWrhK+vOyEh5ejevTNr167J+OBc8OOPi+jQoQ2lSxfD3d3E33//leOPaTIMI7Wx3nzp8uXLHDoUP//5nnvu4eOPP6Zly5YEBARQvnx5Ro0axcmTJ5k1axYQX8K9Zs2aDBkyhMGDB7N27Vqee+45li9fTtu2bTP1mNHR0fj7+xMVGoqfr2+OnVuOiowEq5W9thCs+GDDi8BALWIsIiKSWZcvW/n112VcuHCOsmWDue++Drgl3vBSAF24cI7Vq3/i8mUrVarUoEmTVpizeONOTEwMa9f+zMmTxyhePJA2bbrg5eWdQxHf3uLirhEdHUb58hXx8LixamPaEi9Z2bJpJ1hJlSoFiXfCOBw3EWgqjh49SsuWjfH3L8Lrr7/JnXfeRVzcdVatWsn06dPYsyd+tNPd3cT8+Yvp2rVb9jxwFsyZ8y1Hj4ZRunQQTz/9ONu376JWrdpptr927RrHjoXh51cRF5fk18NqjaZ6dX+ioqLSnfHmkl3B54YdO3bQsmVL5/cjRowAYMCAAcycOZPTp09z7Nh/N6dWrFiR5cuX8/zzz/PZZ59RtmxZvvrqq0wnWLeNgAAICKBm+GFO2YoSSQARJ/yxWt3x9VWyJSIikhEfH1+6d++X12Fkm2LFStCnz6Bb6sPd3Z327TO3rI7kDIcj/p6rzCRYAGfOwKJF0K1b9sXw3HPPYDKZ+O237Xh7/5dk33HHnQwcODjN4159dSRLlizm5MkTlCxZigcffIjRo8fi6uoKwO7df/Pii8PZuXMHJpOJypWrMHny/1GnTl3Cw8MZPnwoW7ZsJjY2luDgCowfP4H27VO/F/Chhx4B4hPC3FKgkqwWLVqQ3sDbzJkzUz1m165dORhVARIcTFBkJEHWw5yiKOG28kTYvLBaITg4r4MTERERkaQyM1i6cGHW+ly4EHr3Tnt/bGzm+4qMjGTVqhW8+eY7yRKsREWKFEnzWF9fX776aialSwexd+8ennnmcXx8fHnxxZcBGDDgIWrXvofPP/8Ci8XC7t1/OROwYcOGEBsby5o1G/Hy8mbfvn/x8fHJfOC5oEAlWZINEka1giIjIeIYkQRgtfkQHu6lUS0RERGRAubixZxtn57Dhw9hGAbVqlXP8rGjRr3m/H+FChU4cOBFFiyY60yyjh8/xogRL1G9enzfVapUcbY/fvwY3bv3pGbNuwCoVKnSrZxGjlCSVVgFBBBEwqiWrSjhUaWIsBXBakXJloiIiEg+kNGokpsbFE17WbNUJbbPyohVWm6ltMOCBfOYPPlzjhw5zOXLl4mLi0t2j9OwYSN46qnHmDPnW1q1ak2PHg8QEhICwJAhz/Hss0+zevUq7ruvNd279+Suu+6+5fPJTrd1dUHJQEK596DAOBr673OWe4+IUAVCERERkfwuNhZ69craMb16ZU+CBVC5chVMJhP794dm3DiJbdu2MmDAQ7Rr14HFi3/i99938coro4lNEtiYMW+wa9c/tG/fkXXr1lK79h0sWRK/6NfgwY8RGnqEfv0eYe/ePTRsWJfJkydmz0llEyVZ8t/aWgnl3gOJIOJEjMq9i4iIiORjZjP07AklS2aufalS0KPHf1UJb1VAQAD339+WqVMnc+XKlRT7L126lOpxW7duoXz5YF55ZTR16tSlSpUqHDsWnqJd1apVGTbseX7+eRXduvXgm2++du4rV64cTzzxFPPnL2L48BeYMePL7DmpbKIkS/6TMKpV0/Mw1d3CnKNa4Slf8yIiIiKSxxLLsM+YEb/QcHosFpg+Pflx2eGzzyZjt9tp3Lgeixf/wMGDB9m3bx+TJn1Os2apr01buXIVjh8/xvz5czl8+DCTJn3uHKUCsNlsDBs2lA0b1hMeHs6WLb+xY8cfVK9eA4AXXhjOqlUrCQsLY9euP9mwYZ1zX2oiIyP5+++/2LfvXwAOHNjP33//xZkzZ7LvibiBkixJLskUwsRRLWxXNaolIiIikg8ZBrRrB0uXxo9UpaZUqfj97drFt89OlSpVYtu2P2nevCUjR77A//5Xk44d72fdujVMnPhFqsd07tyF5557nuHDh1KvXm22bdvCqFFjnPstFguRkRd49NH+1KxZlYce6k3btu0ZO3YcAHa7nWHDhlCrVg06d25HlSpV+fzzKWnG+NNPS6lX7x66desIwMMP96VevXv48sup2fhMJFegFiPOC7fFYsQ3K2ER41O2ooTHlsLmVgRPTxXGEBEREclON7sYcSKTKf4L4tfBWrgwvopg0aLx92D16BG/zzCyP8m6HRW6xYgllyUp9x5k3cdeWwhWmw8RNi/nbhERERHJW4nJk9kcv9Bw0nWwEmtJZOcUQcmYkizJWEKyVTM8vtx7JAFEnPDHanXXqJaIiIhIPpGYSN1YPVAJVu7TPVmSeSqMISIiIiKSISVZkjUqjCEiIiIiki4lWXJzAgKco1rBHIOoS85RLSVbIiIiIlkTX5BCVSnyB+OWC4QoyZKbl2RUq6H/PueoVkSEEi0RERGRzDKbXQGw2a7mcSQC/12HxOtyM1T4Qm6dCmOIiIiI3DSz2YKbWxHOnYsAwNPTCzDlbVCFkoHNdpVz5yJwcyuC2ZzBCs/pUJIl2Sc4OKHc+2FOUZRwW3kibF5YrRAcnNfBiYjkb4cOhTJnzpccOhSKt7cPHTr0pH377ri63vwnqQLnz0fw1lsvsWnTr8TF2alcuTpjxnzIPffcm9ehiSTj41OKy5chIiI+0TIpx8p1iVME3dyK4OOTxsrOmaTFiDNQqBcjvhWRkZyKcCGSAKz4gKeXRrVERNLw6advM2HCGCyW4tjtjTGbT+NwbKdKlbuYO3cFpUoF5XWIBdIvvyzmiSf64nBcB5oAfsBa4BoPP/wE778/NW8DFEmFw2FPeM1KXjCbXdMdwcrsYsRKsjKgJOsWREaC1copW1HCY0thcyuCpydKtkREkvjxx+8ZMqQfMBZ4FXBP2LMTi6UrNWoEsWLF75j0sXaWnD8fQe3a5TCMKsASICRhTzQwDPiG99+fysMPP5FnMYpIwZPZJEuFLyTnqDCGiEi6DMNg4sQPMJvbA+P4L8ECqIPdPpO9e/9g69YNeRRhwfXWWy9hGNdJnmBB/GjWV0BlPv74rTyJTURuf0qyJOclJFuJ5d4DiSDiRIzKvYtIoXfu3FlCQ//C4RiYRotWuLiUYe3an3MzrNvCpk2rgcYkT7ASWYBBnD17KneDEpFCQ0mW5J6EUa2anoep7hbmHNUKD8/rwERE8sb167EJ/0trOroJ8CE2NjaN/ZIWu91O/KhVWnzQmkQiklOUZEnuSjKFMHFUC9tVjWqJSKFUsmQQAQGlgGVptNhPXNx+atWqm5th3RYqV64OrCP+HqzULMHTM70kTETk5inJkrwREOAc1QrmGERdco5qKdkSkcLCxcWFgQOfxGyeAay/Ye9VzOYhFC0aSMeOvfIguoJt7NgPgWvAs4D9hr2zgTU88EC/XI9LRAoHVRfMgKoL5oKEKoR7bSFY8cGGF4GBqkAoIoVDTEwMDz/cia1b1wHdMIyWwGkslpm4uFxi9uyfaNSoRR5HWTCNGvUMs2ZNBSoBg4iflrkEWEuFClXYtCkUs1mfN4tI5qmEezZRkpWLwsM5ZStKJAFExPrj6e+ucu8iUijExsby3Xdf8vXX/0dY2D48PHzo2rUXTz75QsK0N7lZ338/nY8+Gsfp06cAB56efjzwQD/eeWeSEiwRyTIlWdlESVYuS7q2FuWx4YWnJwQH53VgIiIiIlLYaZ0sKZhUGENERERECjglWZI/qTCGiIiIiBRQLnkdgEiaAgLik63ISIKs++ILY9h8iLB5pXuIiIiIiEheUpIl+V9CslUz/LCzMIY1wgc8UyZbVisqliEiIiIieUpJlhQcwcEJo1rxyRZ4pmgSbitBhM1LyZaIiIiI5BklWVKwJJlCCNaU+222+JGuJNMKlWiJiIiISG5SkiUFUxqZU1AABCWZVhgREahRLRERERHJVaouKLefhBLwNT0PO0vAJ1YmFBERERHJaUqy5PaUsN5WYgl4rbclIiIiIrlFSZbc3pKMagVzLNmolpItEREREckJuidLbn9Ji2VEHFNhDBERERHJUUqypPAICFBhDBERERHJcZouKIWPCmOIiIiISA5SkiWFkwpjiIiIiEgOUZIlhZsKY4iIiIhINtM9WSIqjCEi+cSVK5c5ffoEXl4+BAWVvak+7HY7x46FYRgG5ctXxMXl5v7Unz59kitXrJQuXRZvb5+b6uPSpYucO3eGokWLUbx44E31kZ+cPx/BxYsXCAwsjb9/kTyLIy4ujmPHwjCZTJQvXxGLxZJnsdxu11hyxrVr1zhxIhx3d3fKlg3GZDLldUg5TiNZIokCAgiq7pdsCqFGtUQkN1y4cI6XX36Su+4qSfPmNbj33nK0b9+A1auXZ7oPu93OF19MoG7dijRpUoWmTatSt25Fpkz5ALvdnul+1qz5mQ4dGlK3blmaN6/BXXeV5OWXn+D8+YhM93HkyEGefLIPd98dSIsWd1CrVkn69m3Hn3/+nuk+8pM///ydPn3aUqtWSVq0uIO77irBU0/1JSzsUK7GERcXx+TJ71O3bgWaNq1KkyZVuPfeSkyd+mGWrnF2OHz4AI8//gB33VXCeY0ffLA9f/+9I1fjkPztypXLvPnmi9x9d2maN69OgwYVadHibhYtmpPXoeU4k2EYRl4HkZ9FR0fj7+9PVGgofr6+eR2O5JbISLBa2WsLwYoPNrzw9ITg4LwOTERuN5GR5+nYsREnT0Zitz8HtADOYDZ/gcOxno8/nkGfPoPS7cMwDIYOfYQlS77HMAYCfRL2zMdkmknnzg8wefIczOb0P1tdsGAWzz8/EJOpGQ7H00AQsB6L5XOCgorw00+/ZThacehQKJ07N+HKFV/s9uHA/4CDmM2fY7GEMmfOLzRu3DLjJyaf2Lx5LQ8/3AG7vToOxzCgMvAnFsuneHtbWbZsM5UrV8/xOBwOB0OGPMSyZQswjEFAb8AA5mEyzaRbt35MnDgrV0YIDhz4ly5dmnL1qn/CNb4HOIDF8hlm80Hmzl1JgwbNcjwOyd+uXr1Cz56t2Lv3HxyOZ4D2QBQm0wwMYykjR77Dc8+9mtdhZpnVGk316v5ERUXh5+eXZjslWRlQklXIhYc7y71b8QFPL5V7F5FsNXr0UL799nvs9u1ASJI9BvAY7u5z2bXrZLrT01avXs6AAZ2A74G+N+xdAPTm66+X0KZNlzT7iI6O4p57ynDtWi9gBsknuxzBYqlHv34P8N57X6R7Pr17t2HbtmPY7VuBokn2xGA2t6d06XC2bTuYYcKXH9jtdho0qMKZMxVxOH4G3JPsjcRiaUjDhhWYN29ljseycuUSBg/uRvz17HXD3u+BfsyatZxWrTrkeCw9e97HH3+cwW7fAhRJsucaZnNbypQ5zZYtoQXiGkvOmThxPB98MA6H4zegzg17x2AyvcPmzQepUCEktcPzrcwmWXr1i6RHhTFEJAddu3aNefNmYbc/Q/IEC8AEvENsbCyLF6c/tebbb6dhsdQlZYIF8AAWSz2+/fbLdPtYvPg7YmJigHdJ+fagEnb7EBYsmI3NdjXNPo4dC+O3337Fbn+N5AkWgDsOx7ucPHmEzZvXpBtLfrF58xpOnQrD4RhP8gQLIAC7fTSbN6/i+PGjOR7LrFnTsFjqkzLBAuiLxfI/vv12Wo7HceTIQbZtW4fdPobkCRaABw7HOxw/fpCtWzfkeCySv33zzTQcjn6kTLAARmE2F+H776fndli5RkmWSEYSyr0HBcYlK/ceEaFES0RuzblzZ7DZrEDTNFqUwsWlGkeOHEi3nwMH9mO3p9UH2O3NOHgw/T6OHDmAi0tl4qcIpqYZ165dJiLiTJp9hIUdTPhfWrHUx2RyzfB88osjRw5gMrkB96bRIn5K3H/nnXMOHjyQzjU2ZeoaZ4eMr3FjwFRgrrHkjOvXr3P69FHSfp144XDce1u/TpRkiWSWCmOISDbz8UmcanIyjRbXcTjOJGmXOn9//3T6ADiR7rQWAD8/fxyOCCA2zT4AfHzSnjrv6+uf8L+0YonAMK5neD75hY+PH4YRC5xLo8UJZ7uclh3XODv4+WV0jU8DBr6+BeMaS85wcXHBzc2TtF8nBmbzidv6daIkSySrkkwhTDqqFR6e14GJSEFTtGgAjRq1wmyeAsSl0mIedvsFOnfunW4/3br1xmT6ETieyt4TmM2L6d49/T46duyF3R5J/P09N7JjNk+hQYOWFCtWIs0+atWqS6lSwcDENFpMxs3Nk9atO6UbS37RunUnXF09gMlptJhEUFBFatWqm+OxdOv2AGbzIlJ/03oMk2kJ3bqlf42zwz331KdEibKkfY0n4e7uxX335fy9YZJ/mUwmunR5AIvlKyC1Kcbrsdv/zfB3W0GmJEvkZiRMIUw6qoXtqka1RCTLRowYA+zCZHoQCEvYGgPMxGx+knbtelKjxl3p9tG372ACA0tisdwPbCK+aIYBbMZiaUPx4iXo2/fRdPuoXr0mHTo8gNn8DPGFL2IS9oRhMvXDMHYkxJo2i8XCyy+/DswFhgOJZd+jgfcxmd7hiSeGU6TIjfdr5U9FiwbwxBPDMJneBj4ArAl7IoBhwDxefHFsrqxT9eCDj1GsWHEsljbAb/x3jTdisbQhMLA0ffsOzvE4XFxceOmlscAcYAT/jfJFE38/33s8/fQLSUa8pLB65pmXcXE5h9ncGfgnYWscsAiLpTe1azekefM2eRhhzlKSJXIrVBhDRG5Rw4bNmTp1Ht7eq4EQXF1DsFhKAoNo374TkybNyrCPIkWKsnDhGipUcAGa4eJSBheXskBTgoNNLFy4hqJFMy6L+vnn39ChQ2fgUSyWQFxdQ4AQvLxWMnXqvEyVXu/TZxCvv/4xrq7/h8lUFlfXypjNpTGZXuWxx4bx8stvZdhHfjJy5Ds8+uhzmEyjMJtL4epaOeG8pvHGG5/Qp8/AXIkjIKAYCxeuoXx5A2iCi0tZXFzKAM2pWNGVhQtX59oCyQ899DhjxnyIq+uUJNe4FGbzWJ566gVeeOGNXIlD8rdq1e5kzpyfKVLkX6Amrq4VsVhKAT2pX78233677LauQKkS7hlQCXfJtMhITkW4OMu92/AiMFDl3kUkc65evcKyZQs4fDgULy8fOnbsSZUqNbLUh8PhYPPmNc7Kbg0aNKNp09ZZfiNz6FAoy5f/wJUrVkJCqtO58wN4eXlnqY+LFyNZsuR7Tp48RrFiJejSpS9BQWWz1Ed+cvLkcZYtm8eFC+coU6Y8Xbs+mKnENbs5HA42bVrN1q0bMJlMNGzYgiZN7suTN6uRkRdYsuR7Tp06TrFigXTt2pfSpcvkehySv8XGxrJixY/8888u3N09aN26E3ffnVrFwYJB62RlEyVZkmVJ1taKIBBPT7S2loiIiMht4LZdJ2vy5MlUqFABDw8P6tevz/bt29Nt/+mnn1KtWjU8PT0pV64czz//PNeuXculaKVQUmEMERERkUKtQCVZ8+bNY8SIEbz++uv8+eef1KpVi7Zt2xIREZFq+++++45XXnmF119/nX379jF9+nTmzZvHq6++msuRS6GjwhgiIiIihVaBSrI+/vhjHn/8cQYNGsQdd9zB1KlT8fLyYsaMGam237JlC40bN6Zfv35UqFCBNm3a8OCDD2Y4+iWSbVQYQ0RERKTQKTBJVmxsLDt37qR169bObWazmdatW7N169ZUj2nUqBE7d+50JlVHjhzh559/pkOHtNduiImJITo6OtmXyC1JGNUKCoxLNqoVEaFES0REROR25JLXAWTW+fPnsdvtlCxZMtn2kiVLEhoamuox/fr14/z58zRp0gTDMIiLi+Opp55Kd7rg+PHjGTduXLbGLgJAQABBARAUfvi/whgRgVitKowhIiIicjspMCNZN2P9+vW8++67TJkyhT///JNFixaxfPly3nor7TU6Ro0aRVRUlPPr+PHjuRixFAoqjCEiIiJyWyswI1nFixfHYrFw9uzZZNvPnj1LqVKlUj1mzJgxPPLIIzz22GMA3HXXXVy5coUnnniC0aNHp7qmhLu7O+7u7tl/AiJJBQRAQAA1k4xqWW0+hId7aVRLREREpIArMCNZbm5u1KlThzVr1ji3ORwO1qxZQ8OGDVM95urVqykSKYvFAoCWB5N8QYUxRERERG47BWYkC2DEiBEMGDCAunXrUq9ePT799FOuXLnCoEGDAOjfvz9lypRh/PjxAHTu3JmPP/6Ye+65h/r163Po0CHGjBlD586dncmWSJ5LGNUKioyEiGPOUa0Im5dzt4iIiIgUHAUqyerTpw/nzp1j7NixnDlzhtq1a7NixQpnMYxjx44lG7l67bXXMJlMvPbaa5w8eZISJUrQuXNn3nnnnbw6BZG0qTCGiIiIyG3BZGjeXLqio6Px9/cnKjQUP1/fvA5HCovISLBa2RtVDqtbADa88PSE4OC8DkxERESk8LJao6le3Z+oqCj8/PzSbFdg7skSKVQS1taq6X882dpauldLREREJP9TkiWSn6kwhoiIiEiBU6DuyRIplFQYQ0RERKRAUZIlUlCoMIaIiIhIgaAkS6SgCQ4mKDKSIOth9kbFYiWACJsXVqsKY4iI3MjhcLBu3QrWrv2Z69djueuuOvTo8RDe3j65HsuFC+dYsOAbDh/ej7e3Lx079qJu3YaYTKZcj0Vub4ZhsH37ZpYv/wGb7QpVqtxBr179CQgoltehFRqqLpgBVReUfC083DmqZcUHPL00qiUikuDkyWM8/HBnDhzYjYtLFcCXuLi/8PHxY+rU72nZsl2uxTJ79jRee+057HYTZvNdwGni4k7QuPH9fPXVAvz8/HMtFrm9XbwYyeDBPdi+fQMuLuWBQOz23bi4mPngg6n07j0gr0Ms0DJbXVBJVgaUZEm+l1Du/ZStKOGUd5Z7T40SMBEpLGJiYrjvvtocP34Nu30O0BAwAccwmZ7BxWUNv/yynRo17srxWFatWsagQV2Ap4C3gWKAA1iGxTKApk0bM2fO8hyPQ25/hmHQs2crduzYjd0+C2hHfJ27c8ArmExf8913K2nW7P68DbQAUwl3kcIiodx7UGCcs9y7L9EpvhIrE6oqoYgUBr/8soijR0Ox238EGhGfYAGUxzB+wOEoybRpH+dKLJ9++i5mcwtgCvEJFsS/BeuK3T6N9et/Zu/eXbkSi9zeduzYyu+/r8Nunwl04L+3+iWALzGZGvDZZ+PzLL7CREmWyO0iIICg6n7U9DxMTf5J8ZWYgEWciFEJeBG57a1Y8SNmcwOgVip73bHbB/LTT4tyPI6IiDP8/fc2HI4n+S/RS6oHFktxfvllcY7HIre/lSt/xMUliPgE60ZmHI7H2bZtHZcuXczt0AodFb4Qud2kUf0isVjGKYoSbiuvYhkiclu7evUKDkeJdFoEEhNzNVfiiJdWLC6YzQHYbDkfi9z+4l9vxUl7HCUQgGvXbEDRXIqqcNJIlkhhkcq0QmxXNaolIrelatXuxGLZDNhS3W8y/UpIyJ05HkepUmXw9vYHVqfRIozr1w9SrVrOxyK3v6pV78Ru/wc4lUaLX/H3L06xYul9ACHZQUmWSGETEEBQYBw1PQ8TzDGIukREBEq2ROS28tBDT+BwXAJeB26s8bUKWMqgQU/leBweHh48+OAgLJYvgH9u2Hsdk+lFfHz86dy5d47HIre/Hj0ewt3dA5PpRcB+w96/MJu/4pFHHsPV1TUvwitUlGSJFEZJRrUa+u9zjmqpMIaI3C4qVAhhzJgPgQmYzS2BmcAPwEBMpk60aNGeBx98NFdiGTHidUJCgrFYGgLDgR+BKVgsdTGbl/LZZ1/j5eWdK7HI7c3Pz59PPpmByTQfi6UeMJX419tQzOYm1KhRg2effTVvgywkVMI9AyrhLoVCkvW2ImL98fR3V7l3EbktrFq1lEmTJrBz52YASpeuwODBT/P448/n6qf50dFRTJ78Ht9++xVRUecxmUy0bNmR554bxb33Nsq1OKRw2LZtI599Np5Nm1ZiGAZFigTSv//jDBkyEh8fvZ+9FVonK5soyZJCI431tlQYQ0RuB1ZrNNevx1KkSABmc95N5LHb7Vy6FImXlzeenl55FocUDlevXsFmu0qRIgFYLJa8Due2kNkkS9UFRSReQED8/VqRkRBxjEgCsNp8CA/30qiWiBR4vr5pvxnKTRaLRUUHJNd4eXlrKmoe0T1ZIpKcCmOIiIiI3BIlWSKSkgpjiIiIiNw0TRcUkbQlTCGsGX74v8IYJ/yxWlUYQ0RERCQtGskSkYwljGrV9DxMdbcw56hWeHheByYiIiKS/yjJEpHMSTKFMJhjzimEuldLREREJDklWSKSNSqMISIiIpIuJVkiknUqjCEiIiKSJhW+EJGbp8IYIiIiIiloJEtEbp0KY4iIiIg4KckSkeyhwhgiIiIigJIsEcluKowhIiIihZySLBHJfiqMISIiIoWYCl+ISM5RYQwREREphDSSJSI5T4UxREREpBBRkiUiuUOFMUQKHYfDQXR0FHFxcTfdh2EYXL5s5dq1a7cUy7Vr17h82YphGDfdR1xcHNHRUTgcjluKJTvYbFex2a7mdRiSg3SNCzYlWSKSu1QYQ+S2d+7cWV5//Xlq1ChOjRpFqFLFjxEjBnPkyMFM9xEXF8f06Z/TqFF1qlXzIyTEkwceaM369SuzFMv69St54IHWhIR4Uq2aH40aVWf69M+zlPgdPnyAESMGU6WKHzVqFKFGjeK88cYIzp07m6VYbpVhGCxc+C3331+XypW9qVzZm7Zt67F48Xe3lDxK/mEYBvPnf0Pr1v9zXuN27eqzZMlcXeMCxmToiqUrOjoaf39/okJD8fP1zetwRG4vkZFgtbLXFoIVH2x4ERioe7VECrJTp07QuXMTzp2zYrc/BvwPOIjF8n94eFxm0aK11Kx5T7p9xMXF8fjjD/Drr8uA3hhGJ8CKxTITu30b77wzmYEDn8kwlpkzJzN69FAslgbY7QMBX0ymZcAC2rTpwrRp83FxSf/29D17/qRnz/u4ds0Pu/1JoDLwJxbLVwQG+rF06SaCgspm5qm5JYZh8PrrzzN9+meYzR1wOHoDBmbzPByOFTz11IuMGTMhx+OQnGMYBqNHP8s330zGbO6Iw/EA4MBsnovDsYqhQ19h1KjxeR1moWe1RlO9uj9RUVH4+fml2U5JVgaUZInkgvDw/wpjxPrj6a/CGCIF1eDBPVi9+g/s9i1AuSR7orBYWlGxYgzr1+/GZDKl2cfs2dN45ZWnMYylQMckewxgOCbTJLZuPUy5chXS7OPYsTAaNaqMYTwLfAIkfbyfgC5MmDCNfv0eS7MPwzBo3vwujh71xG5fAyR9Q3UMi6Ux999fj+nTf0izj+yyadMa+vZtDUwGbkwwPwOG88MPG2jQoFmOxyI5Y/36lTz0UDtgKvDkDXs/Al7kxx83c++9jXM/OHHKbJKl6YIikvdUGEPktnD69ElWrVqC3f4ayRMsAH/s9vc5dGgv27dvTrefGTO+ADqTPMGC+ETpXcxmX+bM+TLdPubM+RKz2Rd4l+QJFkAnzOZOTJ8+Jd0+tm/fzOHD/2C3f0DyBAugPHb7q6xatYQzZ06l2092+OabL7BYagJPp7L3OSyWasycmf75SP42c+YXWCy1gSdS2fs8Fktlvvnmi1yOSm6WkiwRyR/SKIwRGqp7tUQKioMH/8UwHECbNFrch8nkwr59e9LswzAMDhzYjWGk1Yc3dntTQkPT7gNg377d2O3NAK9U9zscbTl4MOM+TCZXoEUaLdricNg5cODfdPvJDnv27MZub0vKhBHAhN3elr170z8fyd/27t2N3d6G1K+xGbu9LXv26BoXFEqyRCR/uaEwhmesCmOIFBQeHp4J/0vrhzUKw4jD09Mzjf1gMplwd/dMpw8wm88neay0YzGbL6TT4gJubhn3YRhxQFSafQDpnk92iX+M9M8nN+KQnBP/mk7vD915vLx0jQsKJVkikv8kGdVq6L/POaoVEaFESyQ/q127HkWLlgTSmso3HYvFlZYt26fbT7t2XbFYZgKxqezdi8OxjbZtu6bbR9u2XXE4tgD/pLI3FovlG9q3T7+Pli3bYzZbgBlptPiKgIBS1K5dL91+skPHjl0xmxcCF1PZex6zeTEdOqR/PpK/dezYFYtlPqkn9RGYzUt0jQsQJVkikn8lJFuJo1qBRBBxIkajWiL5lJubG0OHvgT8HzABSFzbKg6Yjdk8mr59BxMYWCrdfp5++kXgGCbTg8CZJHt2YrF0p3z5KnTo0DPdPjp27EW5cpWxWLoBfybZcxqT6UFMphM8+eQL6fZRsmRp+vYdjNn8KjAHsCfsuQZ8AExj6NCXcHV1Tbef7PDII0/h5eWK2dwZOJJkzyHM5k74+Hjy8MOp3csjBcWAAc/g4WFKuMZhSfYcwGLphK+vT7qFWiR/UZIlIvmfCmOIFBhPPjkiIXl5GYulDBZLM1xcKgCP0L59V95667MM+6hZ8x6+/HIB7u4rMZnKYbE0wsXlLqAu5cq5MG/eStzd3dPtw8PDg3nzVlKunAtQBxeXu7BYGmEylcfDYxVffrmAmjVrZxjL229/Tvv2XYCHcXEJxmJphsVSBhjJU0+9yBNPPJ9hH9mhVKkgvv/+F/z9DwKVsVjuxWKpC1ShSJFw5s5dQYkSJXMlFskZQUFl+e67X/DzCwVCsFjqJVzjahQtepJ581ZSrFiJvA5TMkkl3DOgEu4i+UxkJKciXIgkQGtrieRjR44cZP78mZw8GU5AQAl69nyYu++uk6U+oqIusXDhLP7+ewfu7u60atWR1q07Zbi2VVJxcXGsXv0Ta9YsJyYmhlq16tKrV3/8/YtkKZbdu3fyww+ziYw8R5kywfTpM4iKFStnqY/sYLPZWLp0Hlu3rsdkMtGwYQs6d+6t+7FuIzbbVZYsmcu2bRsxmUw0bnwfnTo9gIeHR16HJmidrGyjJEskH0pYxPiUrSjhsaWwuRXB0xOtrSUiIiI5SutkicjtS4UxREREJB/L/Hi7iEh+ExAAAQHUDD/MKVtRIgkg4oQ/Vqu7RrVEREQkzyjJEpGCLziYoMhIgqyHOUVRwm3libB5YbXGTyFMjRIwERERySlKskTk9pAwqhUUGQkRx+ILY9h8sOKVoqnN9t8hIiIiItlNSZaI3F4CAggiYVTLVhRsN+z39CQSTyIiAp0jXUq2REREJDspyRKR20/iqFZq+yIjCeIUe6NisRLgnFYYHJzbQYqIiMjtStUFRaRwSahMWNP/OMEcc1YmDA9XZUIRERHJHkqyRKRwSigBX9PzMMEcc5aAV7IlIiIit0rTBUWk8EqjWEaEzcu5W0RERCSrlGSJiAQEEBQAQUnX21JhDBEREblJmi4oIpIoyRTCwNgTyaYQioiIiGRWgUuyJk+eTIUKFfDw8KB+/fps37493faXLl1iyJAhlC5dGnd3d6pWrcrPP/+cS9GKSIGjwhgiIiJyiwrUdMF58+YxYsQIpk6dSv369fn0009p27Yt+/fvJzAwMEX72NhY7r//fgIDA1m4cCFlypQhPDycIkWK5H7wIlKwBAcTFPnfelvhtvLOcu+aQigiIiLpMRmGYeR1EJlVv3597r33XiZNmgSAw+GgXLlyPPvss7zyyisp2k+dOpUJEyYQGhqKq6vrTT1mdHQ0/v7+RIWG4ufre0vxi0gBFRnJqQiX+MIY+GDDi8BAJVoiIiKFjdUaTfXq/kRFReHn55dmuwIzXTA2NpadO3fSunVr5zaz2Uzr1q3ZunVrqscsXbqUhg0bMmTIEEqWLEnNmjV59913sdvtaT5OTEwM0dHRyb5EpJALCCCoup+z3HsgESr3LiIiImkqMNMFz58/j91up2TJksm2lyxZktDQ0FSPOXLkCGvXruWhhx7i559/5tChQzzzzDNcv36d119/PdVjxo8fz7hx47I9fhG5DSSZQrg3KhYrAc4phMHBeR2c3Kx//93NmjXLuX49lpo1/0erVh2wWCxZ6uPcubP89NMCLlw4R1BQOTp1egA/P/8s9XHt2jVWrvyRQ4dC8fb2oV277lSoEJKlPgzD4PffN7Ft20YMw6BBg2Y0aNAMk8mUpX5ECqOzZ0+zfPlCIiPPU7ZsMJ06PYCPT8GdxRQWdogVKxZz9eoVqlS5g7Ztu+Lu7p7XYRUaBWa64KlTpyhTpgxbtmyhYcOGzu0vv/wyGzZs4Pfff09xTNWqVbl27RphYWHOP5gff/wxEyZM4PTp06k+TkxMDDExMc7vo6OjKVeunKYLikhy4eHOcu9WfMDTS/dqFTCXLl3k6af7sXHjCiwWP0wmT+LizlKqVDDTps2lTp0GGfbhcDiYMGEskyd/gMNhwmIpgd1+Bnd3D8aMeZ+BA4dkKpZVq5YxfPhgoqLO4+IShMNxCcOw0b37w0yYMA0PD48M+zh2LIzBg3uxb9+fWCwBgAm7/QLVq9/DjBkLCQ6ulKlYRAobh8PBu+++wrRpn2AYFszm4sTFncbDw4s33/yYhx56PK9DzBKbzcYLLzzGkiXfYTZ7Yzb7Exd3iqJFA/n885ncd1/7vA6xQLvtpgsWL14ci8XC2bNnk20/e/YspUqVSvWY0qVLU7Vq1WSfSNaoUYMzZ84QGxub6jHu7u74+fkl+xIRSSFJufdgjiUr964phPmf3W7n4Yc78dtvfwBzsdvPExd3BviDiIgy9O3bliNHDmbYz2efvc3nn7+D3f4qhnGauLgTGEY41671Z/Toocyf/02GfWzfvpnHHutBdHRDYB9xcSdxOM5hGFP48ccFDB8+KMM+oqOj6NHjPg4ciAJWYbefw24/B/zKwYOX6dHjPqKiLmXYj0hh9P77r/HFFx9it7+Ow3GGuLgTwFGuXevLyy8/wZIlc/M6xCwZOvQRli37EZiGw3GOuLiTwD9culSXgQO7snPntjyOsHAoMEmWm5sbderUYc2aNc5tDoeDNWvWJBvZSqpx48YcOnQIh8Ph3HbgwAFKly6Nm5tbjscsIre5hHLvQYFxycq9R0Qo0crv1q9fya5dW7DbFwB9gMTiSHVxOFYQE+PD//3fR+n2YbVGM3HiB8BLwBtA4jBmGWAy8AAffPBGuvcBA3z00VvAXRjGD0D1hK1ewFM4HFNYtmwuBw78m24f8+Z9zZkzJ7HbfwXuJ/7Puwlojd3+K2fPnmLu3Bnp9iFSGEVGXuD//u8TYDTwGlAkYU85YBrQhffee50CMvGLvXv/YsWKH3A4/g94HPBM2HMHhrEYqM6nn76TdwEWIgUmyQIYMWIEX375Jd988w379u3j6aef5sqVKwwaFP8pX//+/Rk1apSz/dNPP01kZCTDhg3jwIEDLF++nHfffZchQzI3fUNEJFNUGKPAWbp0HhbLXUCLVPb6YrcPYvHi9D+9XrNmOTExV4Bhqew1Ac9x+vRR/vrrjzT7uHTpIps3r8Juf4b/Er2kHsJiCWDp0nnpxrJ48TwMowtQMZW9wRhGNxYvTr8PkcLo11+Xcf16DPBsKnvjf46PHTvAP//8lbuB3aRly+ZjsZQg/sOjG7lhtz/NunXLsVpV2C2nFZjCFwB9+vTh3LlzjB07ljNnzlC7dm1WrFjhLIZx7NgxzOb/8sZy5cqxcuVKnn/+ee6++27KlCnDsGHDGDlyZF6dgojczlQYo8CIjr6E3V6e+DdRqQnmypUoHA5Hsr8rScVPvzMDQWn2kfhYabFao5K1TckNs7l0un0AXLx4EUh9Vkdi/5cu/Z1uHyKFUXT0JcxmTxyOlOutxov/2Swo022joy9hMpUh9Q9tIP5DF4PLl634+uqWmJxUoJIsgKFDhzJ06NBU961fvz7FtoYNG7Jtm+aeikguCQiAgABqhodzynY5vjCGzYfwcBXGyE8qVKiMxTIbuz0WSG36+G+UKROSZoIFULFiZcAB/A6kViTjNwCCg9OuEFi8eEk8PLy5dm0z8dP8bhRBXNwBgoOfSLMPgMqVq3Dy5G+kNTPRYvmNSpWyVqlQpDCoUKEyDsdVYBdwTyotEn+OC0bhmPjzmQFcAIql0uI3vLz8CAgonsuRFT4FarqgiEiBocIY+Vq/fo9ht0cAn6Sydxdm81wGDEi/oljjxvcRFFQRs3kMcGMxpWgslneoV685lSpVSbMPT09PHnjgESyWKUD4DXsN4HVcXCz06PFwurE88sjj2O3bgUWp7F2C3b6VRx4pWBXSRHJDy5btKFGiDCbTaOD6DXsvYbGMp2nTtpQtWzCmI/Tq9QhmswGMI/53SFJhWCxT6dt3gEq55wIlWSIiOUWFMfKtKlVqMHToKOAV4EFgJbANeA2LpQU1atzFoEGpz5pIZLFY+OijaZhMGzCbGwFzgD+A/8NiuRcPj+O8887nGcbywgtvULKkLxZLfeB9YDuwBJOpPTCVt976lKJF0x8Cbd26Ex069MJk6gMMATYAG4GhmEy9aNeuB23bds0wFpHCxsXFhY8+mobZ/Ctmc1Pge+J/jr/AYqmLp2cEb72V2ocx+VOxYiUYN+5jYCImUydgGfG/U8ZjsTQgKCiA4cPH5G2QhUSBWScrr0RHR+Pv7691skTk1iVZWyuCQDw90RTCPGQYBnPmfMnEiR9w4sRhADw9fXnwwYG8/PLbmb5f4Y8/fuO998awbds6AEwmM61adeLVV9+lWrU7M9XH2bOneffdUSxZMjfhJnyoVq0WL744lg4demSqj7i4OCZOHM/06ZO5eDF+uZOiRUvy6KPPMHToKFxd07pHQ0S2bt3A+++P5Y8/NgLxP8dt2nTl1VfHU7lytTyOLuuWLVvARx+9xcGDewBwdfWgR48HGTVqPCVKlMzj6Aq2zK6TpSQrA0qyRCRbRUaC1creqHJY3QKw4YWnpwpj5CWHw8GRIweIiYmhYsXKeHl531Q/p06dIDLyHCVLBt30m5ioqEscP34Ub28fKlQIwWRKqzBH2mJjYzly5AAAlSpV1ZIlIllw8uRxLl48T6lSZShePK1iGAWDYRgcPXqYK1cuU758Rfz8/PM6pNuCkqxsoiRLRHJEZCSnIlziC2PgA54qjCEiIpLfZTbJ0j1ZIiJ5ISBAhTFERERuUwWuhLuIyG0jodx7UGQkRBxzlnuPsHk5d4uIiEjBoyRLRCSvBQQQFABB4Yf/K4wREYjVqsIYIiIiBZGmC4qI5BdJ1tYKjD2RbAqhiIiIFBxKskRE8pOEtbVq+h9PtraW7tUSEREpOJRkiYjkR0lGtVQYQ0REpGDRPVkiIvmVCmOIiIgUSEqyRETyOxXGEBERKVA0XVBEpKBQYQwREZECQUmWiEhBklgYo+wlFcYQERHJp5RkiYgURAEBKowhIiKST+meLBGRgkqFMURERPIlJVkiIgWdCmOIiIjkK5ouKCJyu1BhDBERkXxBSZaIyO1EhTFERETynJIsEZHbkQpj5Jrz5yP44IMx1K1bkUqVfGjcuAZTpnzA5cvWTPdx9epVnnuuPyEhfpQp40LZsu60anU3mzatycHIUxcefoQxY57jrruCCAnx5f776zJ79jSuX7+e67FI/nX5spUpUz6gceMaVKrkQ926FZkwYSwXLpzL69BE8gWTYRhGXgeRn0VHR+Pv709UaCh+vr55HY6ISNZFRnIqwiW+MAY+2PAiMFD3amWH8PAjdO/egnPnLuJwPARUBXZhMs2nSpXqLFq0jqJF03+iL1++TIMGlbl4MQJoD9wHnAFmAFGMHz+R/v2fzuEzibdjx1YefLAdMTHu2O39gSBMpvUYxk80a9aWb75ZgpubW67EIvlXZOQFevRoyeHDB3A4egO1gQOYzXMoUSKAH39cT/nyFfM4SpGcYbVGU726P1FRUfj5+aXZTklWBpRkichtIzz8v8IYBKbaxNNTxTKyonPnJvz991ns9vVAmSR7/sFiaU6XLu2YNGl2un307Xs/mzatA34G2iTZYwU6YDJt599/z6X7xzw7xMbGcu+9FYmMrITD8TOQ9G/easzmjowYMZrnnx+bo3FI/jdkyEMsW7Yq4XV/Z5I9J7BYWlC7dmmWLt2UR9GJ5KzMJlmaLigiUlgkKYxRnVCqe4an+FKxjMzbu3cXf/75G3b7BJInWAB3YrePZunS+Zw/H5FmH9euXWPz5o3AoyRPsCA+yZmGYcTywQejszX21KxY8SPnz5/C4ZhK8gQLoDUOx2C+/noqcXFxOR6L5F/nzp1l2bL52O2vkTzBAiiL3f4BO3du5p9//s6L8ETyDSVZIiKFSUJhjKDAOIJ8rSm+khbLCA3V/Vvp+euvPwAT0CmNFt2w26/zzz9/pdnHv//+jWHEAl3TaFEDqMgff/x2K6Fmyl9/bcfFJYSUb5wTdePChdOcPn0ix2OR/Ouff/7Cbo8j7ddsZ8DEX39tz8WoRPIfrZMlIlIYpTEfMIhIgqzx622Fx5YiIqKI1ttKg4uLC2AA1wCfVFpcBcBiSftPrZube7K2KcX3b7FYbjrOzIo/n2sJj2lKpUXG5yO3v/+uf1qv2fjXUPzrSaTw0kiWiIj8J8lIV0P/fc5RrYgIjWrdqGnT1phMZuDbNFrMwtvbn//9r36afdxxx924unoDM9NosQE4TadOvW8p1sxo3rwtcXEngbWp7jeZZhEScielS984NVIKk//9rz5eXn7ArDRafIvJZKZJk9a5GZZIvqMkS0REUkpcbyuhBHwgEUSciFEJ+CTKlClP5859MJtHAquT7DGA7zCZPmbQoGfw8vJOsw+z2UyfPg8Dy4F3gaRl0vcCj+Du7sNTT72QA2eQXKNGLbjjjjpYLIOB3Un2XAfexzB+ZMiQFzGZUhvlksLC29uHwYOfwWT6CPie+Nc7Cf/+itn8Cl269KVMmXJ5F6RIPqDqghlQdUERKfQiI8FqjZ9CSHlseOHpCcHBeR1Y3rt82Ur//l34/ff1WCz3YLdXw2L5E7v9AF269GXixG8znDblcDjo2bM527dvBkoQX8L9BPAbLi6eLF68Lt3RsOx06tQJevduQ1jYPszmpjgcQVgsm7DbT/Hss68ycuTbSrKE69ev8+yzj7Bs2TwslmrY7fdgsezHbt9FgwYtmTVrKd7eqU2hFSn4VMI9myjJEhFJoPW2UmW321m79hd++OFbzp07R9my5ejbdzANGjTLUkKydOl8Pv30LU6fPo2bmyvt2nXl1Vffw9+/SM4Fn4qYmBiWL1/IsmULsFqtVKlSjYceeoKaNWvnahySvxmGwbZtG5k7dwYnThwnMDCQnj0foWXLdrlyD6FIXlGSlU2UZImIJJF0VCu2FDa3IlpbS0RECg2tkyUiItlPhTFEREQypPqaIiKSdQEBEBBAzfD4cu+RBBBxwh+r1V2jWiIiUuhpJEtERG5ewqhWTc/DVHcLc45qhYfndWAiIiJ5J0tJls1mY/Pmzfz7778p9l27do1Zs9JaM0FERG5bSaYQJpZ7x3aV0FBNIRQRkcIp00nWgQMHqFGjBs2aNeOuu+6iefPmnD592rk/KiqKQYMG5UiQIiJSAAQEOEe1gjmGZ+wl56iWki0RESlMMp1kjRw5kpo1axIREcH+/fvx9fWlcePGHDt2LCfjExGRgkSFMURERDKfZG3ZsoXx48dTvHhxKleuzLJly2jbti1NmzblyJEjORmjiIgUNAnJVuKoViARRJyI0aiWiIgUCplOsmw2W7JV600mE1988QWdO3emefPmHDhwIEcCFBGRAkyFMUREpBDKdAn36tWrs2PHDmrUqJFs+6RJkwDo0qVL9kYmIiK3h4Ry70GRkRBxjEgCsNp8CA31IjBQ5d5FROT2k+mRrO7du/P999+num/SpEk8+OCDGIaRbYGJiMht5obCGIFEqDCGiIjclkyGMqN0RUdH4+/vT1RoKH6+vnkdjojI7SEyEqxW9tpCsOKDDY1qiYhI/me1RlO9uj9RUVH4+fml2S7T0wVFRESyTcIUwprhhzllK0okAUSc8MdqdcfXV8mWiIgUbFlajFhERCRbqTCGiIjchpRkiYhI3kqytlbivVrYrhIaqnu1RESkYNJ0QRERyR8CAggikiBrkimEEYFYrWgKoYiIFChKskREJP9IUu49yHqYvTaw2nyIsHk5dyc1ceJ4Vq1aiqurG0OGjKRVqw5Zfsi9e/9i5szJxMbG0Lx5G3r2fDg7ziTLDMPg9983cehQKN7ePrRs2Z4iRYrmSSz5yaJFc1i/fiVubu4MGPA0d931vyz3cebMKTZu/JXr12OpVasuNWvekwORZswwDLZt28jhw/vx8fGlZcv2+PsXyZNYLl26yLp1v3DlymUqV65O/fpNMZlMeRJLdjh9+iSbNq1OuMb3UrNm7bwOSQq5m6ou+O233zJ16lTCwsLYunUrwcHBfPrpp1SsWJGuXbvmRJx5RtUFRUTyUHj4f6Nasf54+scXxli7djbPP/8oDkdsksYmvL18Wb3mL8qXr5hh1xcvRtK5c0PCwg4C//0p9PT0Y9q0udx3X/vsP5807NixleHDHyUsbB9gAgzc3Dx5/PHnGDnyHSwWS67Fkl9s2PArjz76ADZbVJKtJoKDK/PTT1sICCieYR8221VGjRrKDz/MwuGwO7fXrt2QiRO/oVKlKjkQeer++OM3hg9/jKNHQ0m8xu7uXjzxxHBeeunNXLvGdrud998fzZdffk5srM0ZS8WKNfjssxnUqdMgV+LILlevXuGVV55h8eI5ya7xPfc0YtKkWVSoEJKH0cntKLPVBbN8T9YXX3zBiBEj6NChA5cuXcJuj39BFylShE8//fSmAxYREUkhlcIYK1asZdiwQTgcZYHFQCxwCfiUK1djadq0BrGxsel263A4aN78DsLCwoGPgEjgOrAUm60U/ft35e+/d+TsuSX499/d9OlzP+HhRYB1QBxwmtjYF5k8eQJjxw7PlTjykz17/uShhzphs5UAlhB/bS4CnxAefpxmzWricDjS7cMwDB59tBc//DAPh+OjhOOvAz+yZ08k3bo15+zZ0zl9KgDs3buLPn3acOxYMWAD8df4FDExzzNp0nuMG/dCrsQBMGbMMKZM+ZDY2JeA0wmxrCM8vAi9e7fm339351ost8rhcDBoUA8WL/4Bh+MT4n8PxAKL2b37HN26NSci4kzeBimFVpaTrIkTJ/Lll18yevToZJ+61K1blz179mRrcCIiIjcWxvjgvX6AB7AZ6Aa4Av7Ac8BC4uJiePXVIel2OWPGRC5cOAt8DzwPFCV+Bn1nYBOG4cXIkU/l2Ckl9eGHb3D9ehkcjtVAC+L/NJcC3gQ+5JtvJnPsWFiuxJJfjBz5JIaReI27EH9tigDDgHlcvHiWL7/8NN0+Nm9ey4YNv+BwfJ9wXJGEfrpit6/n0iUbX32Vfh/ZZcKEN4iLC8bh+BVoRvw1Lg28jWG8x4wZEzlxIudLah49ephZs6ZgGB8C44h/nZmBFjgcv3L9ehk+/vjNHI8ju2zatJrNm1fhcMwHniX+94Ar0A27fT2RkVamT/88b4OUQivLSVZYWBj33JNyLrO7uztXrlzJlqBERERSCAggKDCOcxcigYHEv0m9UQegGkuWzE23q1mzvgAqEp+k3SgQeIw9e3L+E/3o6Ch+/XUpdvtQwCuVFk9iNvuyaNGcHI8lP9m9+29gMFAylb2dgRC+/XZqun0sWjQbi6V6QvsblcJuH8DcubNuOdaMXLp0kTVrfsJufxbwTKXF05hMXvz44/c5Hsvixd9hNvsBT6Sy1xu7fSgrV/6I1Rqd47Fkh4ULv8ViqQmkNrU3CLv9EebN+za3wxIBbiLJqlixIn/99VeK7StWrKBGjRrZEZOIiEjqAgKIn95UPY0GJuCODKcLRkVdAmoktE9NNeA6cXFxNxdnJkVFXUy4jySt8/HCbC7HhQsRORpHfuJwODCM68Rfg9TEX+Po6Kg09sc7fz4Cu70a6V3jixdz/nm9ePEChuEg7fPxwWwuw/nzOR/LhQsRmM3lSD2hB6iGw2EnKupijseSHc6di8Bur0peX2OR1GS5uuCIESMYMmQI165dwzAMtm/fzvfff8/48eP56quvciJGERGRJFyAP9PY5wB24umZ2ojBf4oVK8H587sAO5BawYFdmExuuLjkbBHegIDiuLq6c/36LuD+VFpcwm4/QlDQgByNIz8xm82Yze44HH+l0cIO/EmxYukXvihduiwWy6qEe8dTv8YlS5a7tWAzoXjxQCwWV+z2v4D7UmkRicMRTlBQzscSFFQOu/0IEEX81Lob7cLV1T1TRUXygzJlymKxbMBud5D6uEHuXGOR1GR5JOuxxx7j/fff57XXXuPq1av069ePL774gs8++4y+ffvmRIzJTJ48mQoVKuDh4UH9+vXZvn17po6bO3cuJpOJbt265WyAIiKSoyqWLw3MAQ6ksncOcIwuXZ5Mt4+nn0686X9mKnuPADOpV6/+rQWaCd7ePnTu/AAWyyTgQiotPsJkuk6PHnlTVj6v1KvXAPgGOJTK3m+Bkzz55Ivp9tGnzyDs9qMJ7W90CLN5Dg8/PPhWQ82Qr68fnTr1wmL5nPgCKzeagMlkp0ePh3I8lvjXUQzxxV5udAGLZRJdu/bBy8s7x2PJDn37DsZuPwx8l8re/ZjNc3nooUG5HZYIkMUkKy4ujlmzZtG6dWsOHjzI5cuXOXPmDCdOnODRRx/NqRid5s2bx4gRI3j99df5888/qVWrFm3btiUiIv2h4KNHj/Liiy/StGnTHI9RRERy1o/TpxM/YtUImAQcA/4BXgYG4uHuzVMDXiM0FCJTe08LPPBAfypWrEr8vSkvAnsT+pkCNMRiMfjww+k5fi4AL744Dl/fa1gsjUhMIGAH8CjwNs8/P4aSJVO7/+z29fHHX2OxmIi/xpP57xq/BDxKcHAIvXunP7r3v//Vp2fP/phMjyUc909CP5OxWJpSrlw5Bg16NkfPI9FLL72Jt/dlLJbGxH8QcBL4g/h7C9/jxRffoHjxwByPo1SpIJ5/fgzwFvGvrx0JsXyLxdIIX98YXnjhjRyPI7vUrduIrl37YTINAkYC/wLhwEQslmYEB1dg4MD0i+CI5JQsr5Pl5eXFvn37CA4OzqmY0lS/fn3uvfdeJk2aBMTP2y5XrhzPPvssr7zySqrH2O12mjVrxuDBg9m0aROXLl3ixx9/zPRjap0sEZH857c//uD+vg9iu3aN/9a4slC2ZHH2zZ5NtLls/NpaBOLpCb6+KRcyjo2NpW/f+/n99y3E3+cFYKJkyTLMnr2cO+64O9fO59Ch/bz66lB++221c1uxYqV5/vlXGThwSIFeJPZmhYbupV+/9pw9e5L/rrEL9es3ZO7c1bi5uWXYh91u5+OPx/HllxO5cuUSAGazhXbtujN+/ORcSWwSHToUyqhRQ9myZY1zW/HiQYwY8Rr9+z+Va9fYMAxmzpzMJ5+8y4UL/5Wwb9z4fsaPn0RISNVciSO7xMXF8eGHrzNjxmSuXIm/T89sdqFDhx68++4kihUrkccRyu0ms+tkZTnJatGiBcOHD8/1aXexsbF4eXmxcOHCZI89YMAALl26xJIlS1I97vXXX2f37t0sXryYgQMHZphkxcTEEBMT4/w+OjqacuXKKckSEcmHft2wgVkLF+Lp4cGoZ5+lYvny8TsiI8FqZa8tBCs+2PAiMDBlohXf9Dzz53+DzXaF++7rQK1adXP3JJI4evQwhw/vx9vbhzp1GuLq6ppnseQXe/b8yerVP+Hu7knfvoNu6n4hm+0qO3Zs5fr1WO64oxalSgXlQKSZExZ2iCNHDuDj48v//tcgz67x9evX2blzK1euXCYkpFqBX7T36tUr7Ny5jevXY7nzztqFbvRXck+OJVnz589n1KhRPP/889SpUwdv7+Tzdu++O2c++Tt16hRlypRhy5YtNGzY0Ln95ZdfZsOGDfz+++8pjtm8eTN9+/blr7/+onjx4plKst544w3GjRuXYruSLBGRAig8nFO2ovGjWrH+ePq7pzqqJSIikhmZTbKyXDYpsbjFc88959xmMpkwDAOTyZRQxSfvWa1WHnnkEb788kuKF8/8p16jRo1ixIgRzu8TR7JERKQACg4mKDKSIOthTlGUcFt5ImxeWK2QB7PeRUSkkMhykhUWljerzhcvXhyLxcLZs2eTbT979iylSpVK0f7w4cMcPXqUzp3/W4TQ4XAA4OLiwv79+wkJSTk07u7ujru7ezZHLyIieSYgIH4h48hIiDhGJAFYbT6EhqY9hVBERORWZDnJyouCFwBubm7UqVOHNWvWOO/JcjgcrFmzhqFDh6ZoX716dfbs2ZNs22uvvYbVauWzzz7T6JSISGETEEAQCaNaiVMIIwKxWlNvrmmFIiJys7KcZM2aNSvd/f3797/pYDIyYsQIBgwYQN26dalXrx6ffvopV65cYdCgQc7HLlOmDOPHj8fDw4OaNWsmO75IkSIAKbaLiEghkWRUK8h6mL02AI8Uzaw2F00rFBGRm5blJGvYsGHJvr9+/TpXr17Fzc0NLy+vHE2y+vTpw7lz5xg7dixnzpyhdu3arFixgpIlSwJw7NgxzOYsr68sIiKFTUKyVTP8cKq7T1HUOa0wPNxLo1oiIpIlWa4umJqDBw/y9NNP89JLL9G2bdvsiCvf0DpZIiKFUEIJ+FO2ooRTHhteaa63JSIihUdmqwtmy7BPlSpVeO+991KMcomIiBRIAQHxlQkD4wjmGIFEgO0qERHx+ZeIiEh6sjxdMM2OXFw4depUdnUnIiKS9wICCAqAoPCUxTI0qiUiImnJcpK1dOnSZN8bhsHp06eZNGkSjRs3zrbARERE8o0k623tjYrFSoAKY4iISJqynGQllk9PZDKZKFGiBPfddx8fffRRdsUlIiKSvyQWy4iM5FTEZRXGEBGRNGU5yUpc0FdERKRQumG9rXBbeeeolpItERGBmyh88eabb3L16tUU2202G2+++Wa2BCUiIpKvqTCGiIikI8sl3C0WC6dPnyYwMDDZ9gsXLhAYGIjdbs/WAPOaSriLiEiGwsP/K4xBoMq9i4jcpnKshLthGJhMphTb//77bwL010RERAqjhFGtmp6HCYw94RzVCg/P68BERCQvZPqerKJFi2IymTCZTFStWjVZomW327l8+TJPPfVUjgQpIiKS76kwhoiIJMh0kvXpp59iGAaDBw9m3Lhx+Pv7O/e5ublRoUIFGjZsmCNBiojIrdt38CCTZ87k141bMQyD+xrXY8jAgdxVo0Zeh1agXbl6lW8XLmT2ggVERERQvlw5BnXpQu/GjTl3vYQKY4iIFEJZvidrw4YNNGrUCFdX15yKKV/RPVkicjv4/scfeeS5YZgoRpy9B2DGxbIYu+MM0z/6kEF9+uR1iAVSxPnztOrZk38PHaKjyURVw2CX2cxah4MW9euzfOJELll940e18MGGF4GBSrRERAqqzN6TleUkK6lr164RGxubbFt6D1YQKckSkYJu/6FD3HlfK+z2fsCXgFvCnuvAEEym6exauYJad96Zd0EWUB369WPX5s2stttJ+uxtBDqYzfR/+GGmjB+vwhgiIreJHCt8cfXqVYYOHUpgYCDe3t4ULVo02ZeIiOQvU2bNwkRRYBr/JVgArsAULObSTPx6Zp7EVpDtP3SIXzZsYMINCRZAM+AVh4OZc+dyKSpKhTFERAqZLCdZL730EmvXruWLL77A3d2dr776inHjxhEUFMSsWbNyIkYREbkFazb9Tpy9K+Ceyl4X4uw9WbP599wOq8DbtH07AL3S2N8bsMXGsuPvv+M3JKytVbPspWRra4WHa20tEZHbTaYLXyRatmwZs2bNokWLFgwaNIimTZtSuXJlgoODmTNnDg899FBOxCkiIjko5cIckmMCAggikiDrYU7ZiqowhojIbSjLI1mRkZFUqlQJiL//KjLh47cmTZqwcePG7I1ORERuWaum9bFYfgRiUtkbh4vlB1o3a5DLURV8TevVA2BBGvvnAZ5ubtStVSvlzoRRraDAuGSjWhERGtUSEbkdZDnJqlSpEmFhYQBUr16d+fPnA/EjXEWKFMnW4ERE5NY9078/cAl4nOSJ1nXgaeyO0wwdODAPIivYqlWuTIcWLXjJYmHvDfs2AO+ZzQzs25ciSZY8SSEggKDqftT0POxMthLv1VKyJSJScGU5yRo0aBB/J8wvf+WVV5g8eTIeHh48//zzvPTSS9keoIiI3JpqlSsze+LnWCzf42IpDzwNDMHFEozZNIMZH33I3XfckddhFkhff/YZgZUqUQvobDLxAtDSbKYFUL9ePT4cOzZzHakwhojIbeWWSrgDhIeHs3PnTipXrszdd9+dXXHlGyrhLiK3i9BDh5g8cyarNmzBMAxaNanPkIEDqVm9el6HVqBdtdmY/cMPfDt/vnMx4sEPPUSvjh1vbk3JyEhORbg419bC00v3aomI5BO5tk6Wh4fHzR5eICjJEhGRXBcZCVZrfGEMymPDS2triYjkAzm2Tpbdbuett96iTJky+Pj4cOTIEQDGjBnD9OnTbz5iERERiafCGCIiBVqWk6x33nmHmTNn8sEHH+Dm9t+iljVr1uSrr77K1uBEREQKNRXGEBEpkLKcZM2aNYtp06bx0EMPYbFYnNtr1apFaGhotgYnIiIiqDCGiEgBk+Uk6+TJk1SuXDnFdofDwfXr17MlKBEREblBwhTCmmUvJZtCqFEtEZH8J8tJ1h133MGmTZtSbF+4cCH33HNPtgQlIiIiaQgIcI5qBXMs2aiWki0RkfzBJasHjB07lgEDBnDy5EkcDgeLFi1i//79zJo1i59++iknYhQREZGkAgLik63ISIg4Fl/u3eZDhM3LuVtERPJOlkeyunbtyrJly1i9ejXe3t6MHTuWffv2sWzZMu6///6ciFFERERSo8IYIiL5UqbXyTpy5AgVK1bEZDLldEz5itbJEhGRAiFhba29UeWwugU419YKDs7rwEREbh/Zvk5WlSpVOHfunPP7Pn36cPbs2VuLUkRERLKHCmOIiOQbmU6ybhzw+vnnn7ly5Uq2ByQiIiK3QIUxRETyXJYLX4iIiEg+p8IYIiJ5KtNJlslkSnE/VmG7P0tERKRACQggKACCwg9zylaUSAKIiAjEagVfXyVbIiI5JdNJlmEYDBw4EHd3dwCuXbvGU089hbe3d7J2ixYtyt4IRURE5NYEBxMUGUmQ9TB7o2KxEkCEzQurVYUxRERyQqaTrAEDBiT7/uGHH872YERERCSHJEwhrBkZyamIy84phOHhXhrVEhHJZplOsr7++uucjENERERyQ0AAQcSPap2yFSXcVt45qqVkS0Qke6jwhYhIIXLx0iW2//UXhmFwb61aFMvDd9R79u0j/MQJigcEUO+eezCbM13w9rZ1KCyM/YcP4+PtTaO6dXF1dc2ZB1JhjDxz5MhBjhw5gI+PL3XqNMy5aywieUpJlohIIXDVZuPFN99k5ty52GJjAXB3deXhnj359M038bnh/tqctOWPPxg2ejQ7/vnHuS2kbFnGv/YaD3TunGtx5Cf7Dx3imVdeYe3Wrc5tpQICePX55xk6aFDOFZpSYYxcc/DgPl55ZQjbtq1zbitWrDQjRoxmwIBnVExM5Dajjw1FRG5zcXFxdH7kEWbNns3o2FgOAYeBN69fZ/78+bTr25eYmJhciWXrjh20euABLPv2sRQ4BWwEap44Qe+nnuLbhQtzJY785PDRozTp0oWT27czGzgJ7AA6Rkby3JgxvPnJJzkfRHCwc22twNgTKdbWuvFLsubIkYN07tyEP/44A3xH/FX+gwsX2jF69FA+//zdPI5QRLKbybhxlWFJJjo6Gn9/f6JCQ/Hz9c3rcEREsmzekiX0feYZ1gItb9i3DWgIfP3xxwzs0yfHY2ncqRPX//6bTQ4H7km2G8AjwEp/f07s2uWsZFsYPPLss2xYsoRddjvFbtg3BnjPYuHYH39QumTJ3AkoMpJTES7xUwjxAU+vFE1sNggM1EhXZj3zTD9++mkLdvsuoOgNe0dhsXzEzp3HKVEil66xiNw0qzWa6tX9iYqKws/PL812GskSEbnNff399zQ1m1MkWAANgLZmMzPmzMnxOPYfOsSWXbsYeUOCBWAiPqE4HxXFT6tX53gs+cXlK1eYv3QpQ1NJsABeBNwMg9m5uTxKQIBzVCuYYwQTnuIrkIhkI12SNqs1mp9+Wojd/hwpEyyAlzEMC4sW5fzPoIjkHt2TJSJymztx8iT3ORz/396dx0VV738cf80Mu8iWoqKIu2SuuaVlZWpqZi6ZVu7XpdLspt1bdutqlmWL2qZWP7NssVwqzbQs08w0s65LaS654oJIhsIgo8DM+f0BEiDDJsPA8H4+HvMoz/fMl8/hi8KHzzmfr9PxVg4HS2JjXR/HqVMAtHQy3hjwN5uzzqsIziQkkJqeTisn48FAXYuF46WwPjlkb4yB9bLhCGLZbUPNMgrhzJl47PY0nH/lh2Kx1OHUqROlGJWIuJoqWSIiHi48PJz9+XTu22cyEV61quvjqFIFgP1OxmMAm8ORdV5FEBYSgsVsZp+T8RTguMNB+FV51blKQWayddkrKiqr0hVOPPEnLqqq5URo6FWYTGacf+UnY7cfp0qV8NIMS0RcTEmWiIiHGzpwIGsdDnbkMbYH+AIYVgrPYzWNjqZF48bMNJmw5zH+EhAUEMAdt97q8ljKiqDKlelz663MsVg4n8f4m4DV4WBw//6lHVrBsjXLiPY5kqNZhvwtJCSULl1ux2J5nYy0Obd5GIaNfv3uLe3QRMSFlGSJiHi4e/r0odXVV3OrxcI7ZPyYZwPeB7pYLETXq8ewu+5yeRwmk4kXpkzhe6CPycT/yGh4cRC4H5gLTHv0USoFXN5owZNNfeQRTnp709VsZj3gIKPr4n+Bf5tMjB8+nLq1a7s3SGcyq1oR4elZVS1sKezbp6pWdv/+9zS8vGIwm7sBG/h7lZ8AJjNq1EPUrFlG11hEikVJloiIh/Pz8+ObpUu54ZZbGG0yUQkIAIYD13bqxPrPPiu1fbK633wzy995h13h4bQl45tQQ2BpYCCvPv00/xw9ulTiKEuaN2nCt0uXklSnDl0AC1ATmO3ry2Pjx/PK00+7OcJCyNUsQ40xcmratCVLlqwlKuosGT0+M1bZ1/dVHnroP0ydOsvNEYpISVML9wKohbuIeJJDR4+ycetWDMPghrZtaVS/vlvisNvtfPvDD8ScOEGVsDB6du6Mv7+/W2IpKwzDYPMvv7D3wAECK1WiZ+fOhAQHuzusoktIAKuV3bb6WAnERoDavWcyDIOtW3/g0KH9BAZWpnPnngQFlcM1FqnACtvCXUlWAZRkiYiIFENMDLG2UBIIIz41GP9gXypXVrIlIuWb9skSERER91FjDBGpwJRkiYiIiGuoMYaIVFDajFhERERcKyyMCBKIsB76+xbC+HCsVnQLoYh4JCVZIiIi4nqZGxlHJGQkW7ttYLUFEm8LyBoWEfEUSrJERESk9GQmW01jslW1TgRjtaoxhoh4Dj2TJSIiIqVPjTFExIOVuyRr7ty51KlTBz8/P9q3b8/PP//s9Nz58+fTqVMnQkNDCQ0NpWvXrvmeLyIiIqVIjTFExEOVqyRryZIlTJo0ialTp7J9+3ZatGhB9+7diY+Pz/P8DRs2cM899/Ddd9+xZcsWIiMjufXWWzl58mQpRy4iIiJOhYVlVbUuJVuXqlpKtkSkPCpXmxG3b9+etm3bMmfOHAAcDgeRkZFMmDCByZMnF/h+u91OaGgoc+bMYdiwYXmec/HiRS5evJj156SkJCIjI7UZsYiISGlISACrld22+lgJxEYA4eF6VktEygaP24w4NTWVbdu20bVr16xjZrOZrl27smXLlkLNkZKSQlpaGmH5/Es9Y8YMgoODs16RkZFXHLuIiIgUUuYthDmqWicuqqolIuVKuUmyzpw5g91up1q1ajmOV6tWjbi4uELN8dhjjxEREZEjUcvt8ccfJzExMet1/PjxK4pbREREikGNMUSkHKswLdyff/55Fi9ezIYNG/Dz83N6nq+vL76+vqUYmYiIiOQp295axB8jgTCstkD27dMthCJStpWbJKtKlSpYLBZOnz6d4/jp06epXr16vu+dOXMmzz//PN9++y3Nmzd3ZZgiIiJS0sLCiCBjE+OsvbXiw7Fa0d5aIlImlZvbBX18fGjdujXr1q3LOuZwOFi3bh0dOnRw+r4XX3yRZ555hjVr1tCmTZvSCFVERERKWrZ27039D2W1e4+P17NaIlL2lJtKFsCkSZMYPnw4bdq0oV27drzyyiucP3+ekSNHAjBs2DBq1qzJjBkzAHjhhReYMmUKH330EXXq1Ml6diswMJDAwEC3XYeIiIgUU+YthE1jslW1TgRjtfqqqiUiZUa5SrIGDRrEn3/+yZQpU4iLi6Nly5asWbMmqxnGsWPHMJv/Ls698cYbpKamMmDAgBzzTJ06laeeeqo0QxeRcijJauXDTz9l1dq1XLx4kZbNmnHfkCE0ql/f3aEVyzuLF/PgE09w8cIFAHx8fZk9dSoPDB9e6DkuXrzIslWrWPbFF1itVho1aMDYIUO4tlmzQs9hGAY/bN3KO4sXE3PsGFWqVGFw//7c3rUrXl6l+23pxKlTTHzqKb7fvBmH3U7dunV5/vHH6dKpU6HnsNvtrF63jg8+/ZTTfyZQp1YNRg4axM0dO2IymQo9z87du/m/RYv4/Y9DBAUGMKDXbQy64458nyOu0KKiiEjIvIWQUGJstYm3BWC1QlSUu4MTkYquXO2T5Q5JSUkEBwdrnyyRCmbX3r30uPtuTv/1F12AEMNgncVCgsPB69OnM37ECHeHWCRtevZkx2+/4QX0IONe8TVAKhDdsCG/b9hQ4BwnT53i1oED2XP4MJ3MZmo6HGyyWDhht/PvBx7ghSeeKDCpSE9PZ+TDD/Ph8uU0tFhoY7dz0GLhF7ud66+9ltWLFhGcz74jJWnpypUMGTcOu2HQFQgGvgESgXv69uWjuXMLnMOanMxtQ0ew6ectWCzXYrc3xsuynXT7fgb2voMPX38Nb2/vfOcwDIMnX3iB515/HS9LBOn2GzGbTuEwvqd+VH3WL/uY2jVrlsQle66EBGLjvTIaY2hvLRFxIY/bJ0tEpLTYbDZuu/deqp49yyHD4GvDYAlw3G5ngmHw4BNPsO6HH9wdZqE9P2cOO377jW7AKeBzYHnm/98O7DtwgH9Nm5bvHIZh0H/kSKwxMfwKbHQ4+Bg4YrczE3jpjTdY8PHHBcbyzCuv8PGKFbwP7Lfb+Qj42W7ne+D3X3/lHw8/fAVXWnhnEhIYOm4cTQyDo8DXwFIyPicPAh+vWMEr8+cXOM/ofz3Klm2/A99it28DPiLdvhf4mGWrvmTKzJkFzvHBJ5/w3OuvAzNItx8FPsZhbAB2E3PCzu3D/oF+H1qAsLCsZ7Wy9tbKbPeu57VExB1UySqAKlkiFc/CJUsYOWkSfwANc40ZQBuLheqdOrF60SI3RFd0PnXq4JOWxikg979iNqAmkGSxkH7smNM5fti6lRv79+cboFse43eZTOyqXZu9mzc7rWbZbDZqtWrFcKuV2XmMvwOMNpk4sGkT9evUKcSVFd+Ihx/m/WXLOAjUyzXmAFoAf1WpQuyvvzqdI+bECepe1wHDmAvcn8cZjxFY6U3idm6jUkBAnnMYhsE1nbux72BDDOPzPM7YAHTm28WLi3QLY4WWkABWK7tt9bOqWv7+uoVQREqGKlkiIsX09fff08FsvizBAjABQ+12vt64EYfDUdqhFU9aGgO4PMEC8AfuBix2e75TfL1hA9W9vHC2lfsww2B/TAwxJ044nWPbrl0kWK0MdTJ+DxnflNZu3JhvLCXh2x9+oCOXJ1hkxjACiDtzJt81XrdpE4bhAIY4OWMYyeeT2Lp9u9M54uLj2XtgL4YxzMkZN+HlFcmaQtzOKZkyuxBmr2rZEi+qqiUipUpJlohILunp6fjnMx4A2B2OcnMLlwkKvJ6CpNvt+GXOlZdL86enpzufI3PMWSw+gCXzY7maw+HI97r9yaha5pdkZVyPCXDWmCLjI+R3PX9/vpx9VkyY8M/38ypOZGv3Hu1zJKvde0yMuwMTkYpASZaISC7tWrViM3DGyfhys5k211yDxWIpzbCKLc1kYgWQ14/pDuATJ2PZtWvZkqPp6fzmZHwFUC00lKhatZzO0Sw6Gl9vb/K6KQ4yG3EYBu1atiwgmivXvEkTvgecFTY+A4L9/fPtdpgRpwF84eSM5XhZvGl5zTVO54ioXp1qVWuQ8RnMyx7S0v+g/bXXOp1D8pFtb61LVS1sKezbp6qWiLiWkiwRkVxGDhqExdub+0wmUnONvQ+scTh4cPRod4RWLANvv504YDIZKcElBvAUEAN0vemmfOfo3a0bkdWqcb/ZTGKusfXA22Yz940YkW8nvavCwhjcvz/PWyzkftLpFPCIxUK7Zs1oWwpJ1qwpU0gn40mqtFxj7wLrgHvvuivfOVo2bUqH1u3wsvwbyH2b5G4slucYeEdvwqtUcTqHxWJhwsihmE0LyWi/kZ0Vs/l+ql5Vjf49exZ8UeKcGmOISClT44sCqPGFSMW08ptvuGvMGKobBkPsdoKB1WYzGx0ORt19N/NnzizSHkjuFhwdTZLVSjRwLxm/YVsM7AYC/P05f/BggXP8vGMH3QcNwuvCBYba7UQAG81mVjkcdLvhBla+/z6+vr75znEuMZEuAwawa+9e7gTaGAYHgUVmM5XDwvh+xQoa1K17pZdbKI89+ywvzZtHBDCcjBbunwM/Alc3aMDu777LsfdiXo4cO8b1fQcQ/2cidse9QCNgO2bTJ1zdqCEbP11CWGhovnOkpqbS9x+j+eq79ZjNPXE4OgOnsFg+wM/3At989AEd27YtiUsWyLMxhtq9i0hhFbbxhZKsAijJEqm4ftuzh1fffpsv1qzhYloarZo2ZdzIkdzVu3e5SrAuuenOO9n0009ZtzA4gDYtW7J19epCz3Hk2DFeW7CAZStWkHT+PI3q1mXs8OGMHDSowP2gLjmfksL/ffghCz74gJjYWKqEhjJk4EAeHDmSalWrFv3CrsDSlSt54oUXiDl6FAMIqlyZEffcw0v//W+BCdYlf/71F3PefZd3Fn/KX2f/omaNCO4bcjf3DRlC5cDAQs2RlpbG+598wtyFH7L/0EEq+Vfi7r69+OeoUS7vtFhhxcQQawslgTDiU4PxD/alcmUlWyKSPyVZJURJloiIiIfKrGrF2kKJobbavYtIgdTCXURERCQ/aowhIi7ivG2SiIiISEUQFkYECURYD/19C2F8OFYruoVQRIpFlSwRERGRbFWtpv6Hsqpa2ltLRIpDSZaIiIjIJZnJVvZ277bEi2r3LiJFoiRLREREJLdsVa1onyOqaolIkSjJEhEREcmLGmOISDGp8YWIiIhIfvJpjJEXNcsQESVZIiIiIgUJC8tIthIykq3dNgC/y06z2ryItwVgtWq/LZGKTEmWiIiISGFlJltNE+LJq5QVS0aly2oLJCYmQFUtkQpKSZaIiIhIUWUmW7ldqnTF2kKJSaxOvC1E+22JVEBKskRERERKSrbbComPI4FUrLZA4m0BWcMi4vmUZImIiIiUtLAwIsIgIubyZhmqaol4PrVwFxEREXGVbPtthaee0H5bIhWEkiwRERERV8rcb6tprXM59tuKidF+WyKeSkmWiIiISGkIC8uqakVxDBLPZVW1lGyJeBY9kyUiJcowDA7HxJBotVKnVi3CQkPdHZLHiDl+nB+3bSMsJIRuN96I2eye35MZhsGho0exnj9PVM2axV7j3/fvZ+fvv1MvKooOrVsXa47zKSkcOHwYHx8fGtevj8ViKdY84tnsdjv7Dx0iNTWVhvXqUSkgwH3BqDGGSIWgSpaIlJgvvvmGNt260eD662ndowfVW7Tg3nHjOHbypLtDK9d+27OHBh07Uu+667h3/Hh6DB5MUL16TJw6tdRjWbFmDdd27UrDG27g2u7dqd6iBYPHj+dEbGyh51j17bdEtGhBs1tuYciECXS84w5CGzXilfnzCz1H8vnzPDxlChEtWtCqe3eu6dyZBu3bM3fhQgzDKM6liQcyDIN5CxdS97obuKZzZ1p1705481b8c8oUrMnJ7g0uLIyI6KCsqlY48apqiXgQk6HvRvlKSkoiODiYxH37CKpc2d3hiJRZ7y1dyoiJE+liMvGgYVAL+AGYZbFAWBhbVq8msmZNd4dZ7vy+fz9tunWjkt3Oo0Bn4DQwD/gKuKt3b5a++WapxPLO4sWMeuQRuplMjDcMagIbyVhjS5UqbFm9mpo1auQ7x+dr1jBg1CgigUeBtsBBYDbwCzD1kUeYOmlSvnPYbDZuufNOdu/axUMOB72B88BC4ENg0tixzHJDAiplz6PTp/PSG28Ag4ERQGXgCyyW12jZpAEbly8jwN/frTECGVmV1cruxEisPmHYCMDfH6Ki3B2YiORmtSYRHR1MYmIiQUFBTs9TklUAJVkiBbMmJ1OzZUv622y8C5iyjZ0C2lgsdOnbl/dfe81NEZZfzbt04fi+fewA6mQ7bgAPkZFs7d6wgasbNnRpHIlJSdRs1Yq7L1xgPjnX+CQZa9xzwADemT0733mqNmlCaGIiPwMh2Y6nA3cA60wmEg8exM/Pz+kcs996i8nPPMNmw6BtrrGXgUnAzm++ocU11xT6+sTz/LZnDy26dQNeAv6Va3QbZnNHXnjiMf51//1uiM6JhARi471IIAwrgeAfoHbvImVMYZMs3S4oIldsycqVnLfZmE7OH74BagD/tNtZunIlSVarG6Irv5KSktizbx/jyZlgQcbneSpgAR5/7jmXx/LxihVcvHiRp7l8jWsCE+x2Pv7ss3xvwdr400+cSUzkSXImWJDxgPB0INUweH7OnHxjmf/++9wJlyVYAA8CERYL8z/6KN85xPO9/fHHeFmqA//MY7Q1DsddvPFeGfs6UWMMEY+hJEtErtjBo0eJ8vamlpPx64GLaWmcjIsrzbDKvb0HD2In4/OXlypAQ+DwsWMuj+VQTAx1vbyIcDJ+PXAhLY1Tp087nWPr9u1Z5+blWsAH2LV/f/6xHD/ODU5uwvAG2tvtHDpyJN85xPMdPHqUdHt7Mr4q8nI9R08cLcWICimz3XtEeDpRPnFZ7d7j45VoiZQnSrJE5IqFBAXxp91OipPxS3tuBuuW2yKpUa0aAM5SqDQybscsjVuZQ4KCOO1wcMHJeNYa53PrREHXcxpIBa4KCck/lsBA8tvHNcZiIaSAOcTzhQYHY7Hk+5VC5cDgUounyNQYQ6RcU5IlIlfsrttv57xh8G4eY3ZgjtlMpzZtiKhevbRDK9dq16xJeFgYr5ORfOT2MXAWmDhmjMtjGdi7N0l2O+/lMZYOzDWb6XzddVSrWtXpHHf36YO/xcIrZDxTltvrZHxTevzBB/ONZVD//iy0WDiXx9gmYLvdzt19+uQ7h3i+QXfcgd2+k4z2LLkl4mVZyJD+d5RyVMWQWdVq6n+I8NQTWVWtmPzyRxFxOyVZInLF6tepw8iBA5lkMvEqcOmpnD+AQSYTWw2Dqf/K/eC5FMazkyezB+gL7Mk8lgK8BYwFIqtX585evVweR8N69Rg+YAAPmUy8TkY3P4D9wECTiW3AlEceyXcOLy8vRg8fzkpgNHA88/hZ4GngOaBD27bULaCl2qSxY0nz9+dWi4WfyEjY0oBlQD+LhXbNmtGrS5fiXah4jF5dutC2RWsslv7AUjK+SgxgKxZLd/z8bEwaO9a9QRZW5i2ETWudy6pqYUtRVUukDFN3wQKou6BI4aSmpvLgf/7DgsWL8TGZCDWbOZWezlVBQbw1c2apJAKe6umXX2b6rFmkGQZVAStwAahXqxa/rFlTahs+X7x4kfH/+Q/vLFmCn8lESOYaVwkOZv7s2fTt0aNQ8wx76CE++vRTHGQ8V3aWjIpnu2uvZdPy5Xh5eRU4x/Zduxg4ejSHTpwg3MsLm8OB1eHg1htu4KM33uAqtWMTIOHsWe4eN4G1G7/DYq6MyexPeno8tWtG8en8N2jTooW7Qyy6zHbvsbZQYlKrY/MJwd8fdSEUKSVq4V5ClGSJFM2xkyf5dPVqkpKTaVi3Lv179sy3HbcUTnJyMlNmzmTH7t0EVqrExDFjuOWGG9wSy9Hjx1n+1VckJSfTqF49+vXoUeQ1jo2L48mXXuLw0aNUrVKFqRMn0jQ6ukhz2O12vvn+e3759Vd8vL3p2bmz2rZLnn7bs4cv168nNS2NNs2b0/3mm7FYLO4O68rkavduI4DwcCVaIq6mJKuEKMkSERGRMismhlhbKAmEEU+4qloiLqZ9skREREQ8nRpjiJRJSrJEREREyjM1xhApc5RkiYiIiHiCsLCsqlYUxyDxnPbWEnGTgls4iYiIiEj5EBaWkWwlJEB8HAmkYrUFEm8LyBoWEddTkiUiIiLiacLCiAiDiJhDfzfGiA/HalVjDJHSoNsFRURERDyVGmOIuIWSLBERERFPpsYYIqVOSZaIiIhIRaDGGCKlRkmWiIiISEWRWdWKCE+nQ/DerKpWfLwSLZGSpMYXIiIiIhVNZhfCpmqMIeISqmSJiIiIVFRqjCHiEkqyRERERCoyNcYQKXFKskREREREjTFESpCSLBERERHJoMYYIiVCjS9EREREJCc1xhC5IkqyRNxs5+7dfPDpp8T9+Se1atRgxMCBXN2wobvDcqsPP/mEyTNmcDYxEX9/f+4bPJin//1vLBZLoec4dvIkjzz9NNt/+w2LxcLtXbsy/dFHCQgIKPQcFy5cYNrs2Xz21VekpaXRLDqa2U89Rf06dYp0PYs++4xZb71FwrlzVKtalakTJ3Jbly5FmuPU6dO8u2QJew4cIDAggDt79aLLDTdgNhf+hgSbzcbSL77gux9/xDAMbrzuOu7p25cAf/9Cz2EYBht+/JFlq1aRlJxM43r1GDloELUiIop0PSJSTkRFEZGQQIT1ELsTU7ESRrwtAKsVoqLcHZxI2WUyDMNwdxBFMXfuXF566SXi4uJo0aIFr7/+Ou3atXN6/rJly/jvf//L0aNHadiwIS+88AK33XZboT9eUlISwcHBJO7bR1DlyiVxCSIApKWl8Y+JE/lw+XJqeHnRyDDYA/xptzNu+HBenz69SD9AewK73U5Uu3acjIsjCGgOHAZigQAfH/748Udq1qhR4DzTZs/mmVmzAGgDJAO/A34WCyvef5/uN99c4Bybf/mFW++6i5S0NKKBEOB/gAP455gxzH7qqQLnSE5OpmnnzsTExhIONAT2AGeB5ldfzbY1a/DyKvh3XW++/z4PPfkk3oZBa5OJ0yYTf6Snc12LFnzx4YdUKcSvlLf99hu9hwzh1F9/0cZiwQz8YrdTJSSEFQsX0rFt2wLnOHvuHH1HjGDjL79Q38uLmobBdsPABrz03/8ycezYAucQkXIsIYHYeC8SCMNKIPgHqKolFY7VmkR0dDCJiYkEBQU5Pa9c/QS3ZMkSJk2axNSpU9m+fTstWrSge/fuxMfH53n+jz/+yD333MOoUaPYsWMHffv2pW/fvuzevbuUIxe53KPTp7NkxQreAY6lp7PBbueE3c5rwBvvvcf0V191d4ilrnWPHpyMi+NZIA74ATgGLAHsqak0ufHGAudY/tVXPD1rFj2B48BPwG7gVyDSbqfP0KGcKeDBgpSUFLoNGECVtDR+BvYCW4CTwF3AK/Pns+DjjwuM5fo+fTgZG8vCzPduAk4BrwC79u7ltqFDC5xj9bff8sDjjzPWbifW4WCj3c6+9HTWAYd376b/iBEU9Luy+DNn6D5oEJFnz3KAjORqq93OISA6KYnbBg/mRGxsgbHcfd997N6+nTXAgfR0vs+M6Z8OB5OmTeOTVasKnENEyrF8GmPk9dIzXFKRlatKVvv27Wnbti1z5swBwOFwEBkZyYQJE5g8efJl5w8aNIjz58+zKts3/uuuu46WLVvy5ptvFupjqpIlrpBw9iw1W7XiibQ0nsxjfBKwMDCQkzt34l+EW7nKs+TkZEIbN2YwsDCP8TnAQ8CKd97hju7dnc7T6IYbOH/kCIcB31xjB4DGwIi77+adzEpXXiY99RQvz5/PdqBVrrF0oAlwoXp1jm3b5nSO/YcO0eTGG5kOPJ7H+EPAm0D8nj2EBAc7nafTHXdg3rGDDQ4HplxjXwG3AZtWrOD6fCpRz776Ks/OnEmMw0HVXGPngNpmMw89+CDTH3vM6RzbfvuNNj178inQP9eYAfQ0mYiPjmbb2rWYTLkjFRGPk5AAViu7bfXB3++yYavNCxsB+PvrtkLxLB5XyUpNTWXbtm107do165jZbKZr165s2bIlz/ds2bIlx/kA3bt3d3o+wMWLF0lKSsrxEilp32zcyIW0NEY7GR8NnE1O5oeffy7NsNzqpTffJB0Y42R8OBn/YD1TQIXv6JEj/IPLEyzIuF2vE/DVt9/mO8fyNWtoyeUJFmQ8yDoaOBEXh8PhcDrHq2+/jSPz3LyMBtIg34rYXwkJbNq2jdF5JFgA3YFaXl58/vXXTucA+PzLL+mbR4IFGbdBDnQ4+Hz16nznWPnNN1SxWOiTx5gJGG0Y7Ni7l5OnTuU7j4h4iEt7a/kfoim/X/a6tN+WLfGiqlpSIZWbxhdnzpzBbrdTrVq1HMerVavGvn378nxPXFxcnufHxcU5/TgzZsxg2rRpVx6wSD5sFy4A4Ow29qtynVcRnEtMBP6+9twCAW8ymlHkx4HzzytAVWBPWlq+c6SmpjqNAzJiNID09HR8fHzyPOd8SgoAofnMAWBNTnb6cQr6OjFnzl/Q14nNZsv3c3JV5jn5znHhAsFmMxa73ekcl84TkQrESZnqUrOMWEKJsdVWswypcMpNJau0PP744yQmJma9jh8/7u6QxAO1aNIEAGf1hzWZ/20WHV0q8ZQFd/bqhYm/rz23TcAFoEPr1vnOE+jvz1dOxmzAt0BUAd/lG9evz4+Aszr2l0CAt7fTBAvg5g4dAPjGyfil6+x2001O56geHk54SIjTr5NjwO/p6TS/+mqncwA0b9aMbywW8qq7GcBXFgvNmzXLf46rr+ZQWhoHnIyvAUIqVSJSXQZFBHLst3WpqoUthX37VNWSiqHcJFlVqlTBYrFw+vTpHMdPnz5N9erV83xP9erVi3Q+gK+vL0FBQTleIiXt2mbNaNesGf+xWMj9veYUMM1ioXunTtSrQL/yu/G66wjw8+M5MjoKZmcl4zk1b2DOs8/mO8/Afv1YC3yW67gBTAESgRl5PMOZ3YtPPskF4N9wWWLyNbACuC2f58IAhg8cSGVfXx4lo5tgdieBp4BqYWH5Pkvl5eXFmGHDWGA280uusTRgoslEYEAA9/Ttm28sDwwfzgG7nZfzGHsT2GW3c//w4fnOMaBXL6oEB/Ow2czFXGO/Am9YLIy89178/C5/NkNEKrBczTLCic9qlqFkSzxZuUmyfHx8aN26NevWrcs65nA4WLduHR0yf2OcW4cOHXKcD7B27Vqn54uUpndefZVTlSrR1GJhKrCYjAYJzS0WUsPCeOPFF90cYelb+d57nANaAI+Q8Tl5FogGdgCP/fOf+VaPICMJq12jBgOAAcCHwFtAB2Am0Ld793yrRwBtWrRg6IAB/B8ZLeDnAYuAe4BeQNWwMN57Oa+U5W9ms5l3X3+d/ZnxT8u8nslAU+BPs5lP33kn3zkAHp8wgRbNm3Oj2cwY4GPgZaClxcJKs5n358whsFKlfOe4oV07Hhs/nn8Bt5rNvENGc5HbzGbGAQ/94x90K6Bzo5+fHx/Om8c6i4UWFguzMmN5AOhoNtOwUSOeeuSRAq9HRCqgbFWtpv6Hsqpal5ItEU9UrroLLlmyhOHDh/PWW2/Rrl07XnnlFZYuXcq+ffuoVq0aw4YNo2bNmsyYMQPIaOF+00038fzzz9OrVy8WL17Mc889x/bt22natGmhPqa6C4orHTl2jBfmzuXDTz7h/IULBFeqxPC77+axceOIyKfi6sl+2raNfqNHcyY+nnQyfhNUqVIlZk2dypjBgws1R2pqKsMeeogv1qwhJfP5q6uCgpgwZgxTJ00qdCwvzZvHzLlziT93DgB/i4XuXbuyaM6cQm9qvOHHH3ng8cc5cPAgdjIehG3WtCnvzJpFy0L+O5Ris/Hy//0fby1cyPH4eCxmM31uvZVHx4+n/bXXFmoOwzBYunIlL7/5Jlt/+w2A1k2a8M/77mPInXcWuiPg9l27eGHOHD776ivS7XYiqlRhzLBhPHLffVQODCzUHCJSwcXEEGsLJYEw4lOD8Q/21X5bUm4UtrtguUqyAObMmZO1GXHLli157bXXaN++PQA333wzderUYeHChVnnL1u2jCeffDJrM+IXX3xRmxFLmWO32zmfkkJgpUoVbgNiZ1JTUzl6/DiRERHFbmPvcDg4k5CAn4/PFd36m5ycTMqFC1QJCyv2+qSmpnImIYHwKlUKtQFxXgzDIPn8efx8ffH29i7WHPB3k4sr2R4gPT0d24ULBFaqpJbtIlJ0mS3gY22hxFBb7d6l3PDYJKu0KckSERERcZGEBGLjvUggDCuB2AggPFxVLSm7CptklZsW7iIiIiLiYcLCiCCz3fulWwjjw7Fa0S2EUq7pviQRERERcR81xhAPpCRLRERERNwvM9nK3u7dlnhR7d6lXFKSJSIiIiJlR7aqVrTPEVW1pFxSkiUiIiIiZUu2WwgvVbWwpbBvn6paUj6o8YWIiIiIlE1qjCHllCpZIiIiIlJ2qTGGlENKskRERESk7FNjDClHlGSJiIiISPmhxhhSDijJEhEREZHyRY0xpIxT4wsRERERKZ/UGEPKKFWyRERERKT8UmMMKYOUZImIiIhI+ZdHYwxsKWqMIW6hJEtEREREPEe2qlYUx1TVErdQkiUiJe58Sgqn//yT9PT0Ys+RmprK6T//xGazlWBkxZNktfLnX3/hcDjcGkd6ejrxZ86QfP68W+MoKWVpjUXEw6gxhriZkiwRKTE/bdvGHcOGEdSoEdVbtqRa06b86+mnOXvuXKHniIuP58EnnqBKkyZUb9mSoMaNGTh2LL/t2eO6wJ1Y/e233NinD8HR0YQ3b07Utdfy7KuvcvHixVKNw5qczH9mzCCieXOqtWhB5UaN6HH33Xy/ZUupxlFSYuPiGPf441x19dVZa3z3/feze98+d4cmIp4mLCxHVSuc+KyqlpItcSWTYRiGu4Moy5KSkggODiZx3z6CKld2dzgiZdaqtWvpP2oU0cB9dju1gB+Aty0WakZFsfHzz7mqgDZPJ2JjuaF3b87/+Sf32+20BQ4Bb1gsnPTy4uvFi7mhXTvXXwww5913mfDkk3QymxnpcBACfAm8bzZz43XXserDD/H19XV5HElWK5379eOPP/7gH3Y7twBxwHyLhZ2GwaI5cxjUp4/L4ygpx06e5Ibbb+fCX39xv91OG+AgGWt8ytubtUuW0KFNG3eHKSKeKCEBrFZ22+pjJRAbAfj7Q1SUuwOT8sRqTSI6OpjExESCgoKcnqckqwBKskQKduHCBWq1asX1ViufGAbe2cb2Ax0tFgYNHsy8GTPynWfA6NFs/eYbtmQmaZekAD3MZk7WqMGBn37CbHZtEf7YyZPUu+46HnQ4eBkwZRvbAHQzmXhp6lQeHjPGpXEAPPbss8x78002ORy0yHbcDgw1mfjC15eTO3eWm3+f+o0cyfZ169hitxOR7fh5oLvZTHzNmuz78UeXr7GIVGAxMX+3e08Nxj/YV+3epdAKm2Tpu5iIXLFPVq/mr6QkZuVKsAAaAxPsdj5YupTzKSlO54iLj2fF118zOVeCBRAAvOhwcPjkSdZu3FjC0V/u7Y8+opLJxHRyJlgANwMDgDfffdflcaSlpbHgww8ZmyvBArAAMw0D28WLLPrsM5fHUhJOnjrFyrVr+U+uBAugEvC8w8GB48f5bvNmd4QnIhVFtsYY0T5H1BhDXEJJlohcsd//+IM63t40cDLeFUi+cIHjsbFO5/jj8GHsDgddnIy3ByqZzez5448rjLZgv//xB9c5HAQ6Ge9qGOyPicFut7s0jtN//slfSUlOPycRwDUWC3sOHHBpHCVl/6FDOAzD6fVcD/iZzeXmekSkHFNjDHExJVkicsUq+ftz1uEg1cl4fOZ/A/z9nc8REJDj3NySgAuGke8cJaWSvz/x+dyuFg/4enu7/Ja2S9fq7HPiAM6Q/+e1LClojc8BFx2OcnM9IuIB1BhDXERJlohcsX49e5Jot7M0jzEDeMtspnWTJkRG5L5J7G8tr7mGqOrVecvJ+DsAJhO9u3W78oAL0K9nT3ba7fycx1gq8I7FQv/bbsNkyn0zYckKCw3l5vbtmW82k1fz+FVAbHo6/Xv2dGkcJaV18+ZEhoc7XeO3AS+LhV5dnNW6RERcIFtVq6n/oayqlm4hlCuhJEtErtg1jRvT79ZbGWc28wkZTRkAEoCHgG8cDp6YNCnfpMRisfCfiRP5CHiSjMoVQBrwLvC42cw/Bg0ionp1111Ipt7dutG8USPutFj4noxEEeA4MNBk4pjJxL8eeMDlcQA8/s9/ssUwGM3fFSAHGQnWSIuFLh060K5Vq1KJ5Up5eXnx+MMP8z4wFbBmHk8FFgBPmkyMvvdeqoeHuy1GEanAMpOt7FUtbCmqakmxqLtgAdRdUKRwks+f5+777mP1d98R4eVFBLDb4cBhNvPytGmMGzGiwDkMw+DZV1/lqVmz8AeizWaOAfHp6dzbpw/vvPxyqbRNh4y9nHoPGcL2vXup5+VFMPBrejqBAQEsmjeP20uhonbJe0uXcv+jj+JIT6eZxUI8cDw9nc7XXcenCxYQGhJSarFcKcMwePrll3l69mwCTCaizWZiDIM/7XaG9OvHgtmz8fHxcXeYIlLRZbZ7j7WFEkNttXuXLGrhXkKUZIkUzS87d7Jk5UqSkpNpWLcuw++6i/AqVYo0x4nYWN5btoyjJ05wVWgog/v1o9nVV7soYuccDgfrNm3ii7VruXjxIq2aNmVw//5UDnTWEsN1/kpI4INPP2XPgQMEBgRwZ69edGzTxuW3LLrK8ZMneW/ZMmJOnqRKWBiD+/WjaXS0u8MSEckpIYHYeC8SCMvaWys8XO3eKzIlWSVESZaIiIhIBZatqpVAGPGE4++P9taqoLRPloiIiIjIlVJjDCkGJVkiIiIiIgVRYwwpAiVZIiIiIiKFla2qFcUxVbUkT0qyRERERESKItsthNmrWvv2qaolGbzcHYCIiIiISLkUFkYECURYD/3dGCM+HKtVjTEqOiVZIiIiIiLFFRaWkWwlZCRbu21gtQUSbwvISrbyeot4NiVZIiIiIiJXKjPZahrzd1XLagvESsBlp6rS5fmUZImIiIiIlJSoqKyqVqwtFPC/7JSYxGDibSFKtjyYkiwRERERkZKU7RZCsF42HEEsu231s24rvPQW8RxKskREREREXMFZ5pTrtkI1y/A8auEuIiIiIlLasu23FZ56QvtteRglWSIiIiIi7pC531bTWudy7LcVE6P9tso7JVkiIiIiIu4UFpZV1YriGCSey6pqKdkqn5RkiYiIiIi4W2ZVKyI8nQ7Be7OqWvHxSrTKIzW+EBEREREpK/LYb0uNMcofJVkVgM1m45PVq9m9fz8B/v707d6dFtdc4+6wpIxxOBys37SJ7378EcMwuL5tW3p07ozFYinSPPsPHuST1atJtFppVK8eg+64g8qBgS6KWkRExENl229rd2IqVsKItwVgtUJUlLuDk4KYDMMw3B1EWZaUlERwcDCJ+/YRVLmyu8MpslVr1zJ8wgQSrFbqeXtz1uHgrN1O71tu4cN588rlNUnJOxwTQ9/hw9l14AA1vLywACfS02lYuzbLFy7kmsaNC5zjwoULjH7kERatWEGQxUJVs5kjaWlU8vfnjRdfZHD//q6/EBEREU+UkEBsvBcJhGElEPwDVNVyE6s1iejoYBITEwkKCnJ6np7J8mBbt2+n/6hR3JCczAHgUFoap+12PgK+//57Bo4Zg3JsSbJa6TpgABcOH2YDcDI9nWPp6WwB/E+epOuAAcSfOVPgPGP+9S8+XbmS/wNO2+0cTEvjKNDHZmPoQw+x5rvvXHodIiIiHkuNMcodJVke7LlXX6Ux8Ilh0CDzmDdwD7DQbufrH35g6/bt7gtQyoT3P/mEY6dO8bXdzk2AKfN1HfCN3U7SuXO89cEH+c7xx6FDfLh8Oa85HIwB/DKPRwLvAZ1MJp6ZNcuFVyEiIuLh1BijXFGS5aFSbDZWrVvHfXY73nmM9wFqeXmx9IsvSjs0KWOWrlhBL6BuHmPVgLscDpYuX57vHJ+sXk1li4WheYyZgXEOBz/u2MHJU6euPGAREZGK7NLeWplVrXDiVdUqg5RkeajzKSk4DIOaTsbNQASQlJxcilFJWZSUmEjNfG4brUXGLYX5zpGcTBWzOauCldccl84TERGREpBZ1Wrqf4jw1BNZVa2YGHcHJqAky2OFhYRwVVAQPzgZTwB+czhoVK9eaYYlZVCjRo34wWLBWZr1vcVCowYNnIxmaFy/PjFpaTj7d/17wM/bm1o1alxJqCIiIpLdpapWrXNZVS1sKapqlQFKsjyUxWJh1JAhvG2xsCfXmAFMARxmMyMGDnRDdFKWjB0yhN12O+/lMfY5sMlu577hw/OdY2Dv3lSuVInJJhP2XGPHgNcsFu7t31+t3EVERFxBjTHKHCVZHuzxBx+kTr16XG+x8CQZ1YRlwK1mM3OBl6dNI7xKFfcGKW7XpVMnRt19N/8AhgNfAd8AY4EBJhN39uxJv549852jUkAAb730EkuBG81mFgEbgelAW4uFgGrVeHbyZNdeiIiISEWmxhhlivbJKkB53yfr7LlzTJk5k/cWL8ZqswHQ5ppr+M/EiQX+4CwVh8Ph4LUFC3j1rbc4mtmcombVqowfNYp/P/AAXl6F27d87caNPDNrFj/8738A+Pv4cE+/fkx/7DFqVKvmsvhFREQkl5gYYm2hJBBGPOH4+6O9tUpAYffJUpJVgPKeZF2SYrNxIjaWAH9/akVEuDscKaPsdjtHjx/HMAzqREYWOrnK7dTp0yRZrdSsUYPASpVKOEoREREplIQEsFrZnRiJ1ScMGwH4+0NUlLsDK7+UZJUQT0myRERERKSCSkggNt6LBMKwEgj+AapqFVNhk6xy80xWQkICgwcPJigoiJCQEEaNGkVyPu2gExISmDBhAo0bN8bf35/atWvz0EMPkZiYWIpRi4iIiIi4mRpjlLpyk2QNHjyY33//nbVr17Jq1So2btzI2LFjnZ4fGxtLbGwsM2fOZPfu3SxcuJA1a9YwatSoUoxaRERERKQMUGOMUlUubhfcu3cvTZo04ZdffqFNmzYArFmzhttuu40TJ04QUchnjJYtW8aQIUM4f/58oZ810e2CIiIiIuJx1BijWDzqdsEtW7YQEhKSlWABdO3aFbPZzNatWws9z6VPRn4J1sWLF0lKSsrxEhERERHxKJlVrab+hwhPPZFV1YqJcXdgnqFcJFlxcXGEh4fnOObl5UVYWBhxcXGFmuPMmTM888wz+d5iCDBjxgyCg4OzXpGRkcWOW0RERESkzMq8hbBprXNEcSzrFkI9q3Xl3JpkTZ48GZPJlO9r3759V/xxkpKS6NWrF02aNOGpp57K99zHH3+cxMTErNfx48ev+OOLiIiIiJRZaoxR4oq3CU4JeeSRRxgxYkS+59SrV4/q1asTHx+f43h6ejoJCQlUr1493/dbrVZ69OhB5cqVWb58Od7e3vme7+vri6+vb6HiFxERERHxCGFhGclWQgIR1r3sttXHagsk3haQNSyF59Ykq2rVqlStWrXA8zp06MC5c+fYtm0brVu3BmD9+vU4HA7at2/v9H1JSUl0794dX19fVq5ciZ+fX4nFLiIiIiLicTKTraYxh/5ujBEfjtWqxhhFUS6eybr66qvp0aMHY8aM4eeff2bz5s08+OCD3H333VmdBU+ePEl0dDQ///wzkJFg3XrrrZw/f54FCxaQlJREXFwccXFx2O12d16OiIiIiEjZpsYYV8StlayiWLRoEQ8++CBdunTBbDZz55138tprr2WNp6WlsX//flJSUgDYvn17VufBBg0a5JjryJEj1KlTp9RiFxEREREpdy5VtRISiI1PJoEwrLZAYmICVNUqQLnYJ8udtE+WiIiIiFR4CQlgtRJrCyUmtTo2n5AKubeWR+2TJSIiIiIibpTZ7j0iPJ0OwXuz2r3Hx6sDYV7Kze2CIiIiIiLiZmqMUSiqZImIiIiISNGoMUa+lGSJiIiIiEjRZd5C2LTWOaI4lnULoTYxVpIl5UxsXBw9Bg/Gv3ZtTDVr4lOzJi27dWPzL7+Ueiwffvopddq1w6tmTcw1axJUrx4jJ04kNTW1VONIS0vjjffeo8XNN+MVGUlww4aMnDiR3fv2lWocJSXJauW5116jftu2WGrVIrxJEx6eMoXjJ08Weg7DMPh4xQquv/12fGrXJqBuXfr/4x9u+ToRERHxeGFhWVWtKI5B4rmsqlZFTbbUXbAA6i5YdhyJiaH5zTeTmprKPUB74AjwNmAFPn7rLQbcfnupxPLvp59m1ltvEQWMAkKB1cAaILJGDQ78+CM+Pj4ujyM1NZU+w4ez9ocf6AN0MQzigYUWC6fNZla+/z7dbrzR5XGUlISzZ+ncvz9/HDzIPQ4H7YBDwLsWC+bKlVn/6ac0jY7Odw7DMLj/scf4v0WL6Go2c4fDwXngQ4uFPQ4Hb8+cyT/uvrs0LkdERKTiyexCuNtWHyuB2AggPDzvU8vj81uF7S6oJKsASrLKjuhOnTh1+DCbgGbZjicAnYGD3t5YDx/GbHZtgXb/oUM0ufFGBgAfAt7Zxj4DBgD39OvHojlzXBoHwPNz5jDl+ef50jDomu34BaC/2cxPAQEc37GDSgEBLo+lJIx8+GFWfvYZG+12rsl2/C/gFosFo149fv3uO0wmk9M5lq5cyaAHHuBdYES24w7gAWCB2czBH3+kTmSkKy5BREREAGJishpjWP2dZFmUv2YZauEuHiXm+HEOHD7MY+RMsADCgFeBlLQ0Xpk/3+WxTJo2DQswl5wJFkB/oDfw+apVLo/D4XAwb8EChuZKsAD8gLkOB+eSk1n8+ecuj6UkJJw9y8crVvBorgQL4Cpglt3OrgMH2PTzz/nOM3fBAm42m3MkWJDxj91sINBk4v8+/LDE4hYREZE8ZGuMEWXbRxQxl708uVmGkiwpF77+/nscZCQwebkJCADWbd7s8lh27d1LB6CKk/E+wPm0NJKTk10ax59//cXx+Hinn5O6QHMvL/73668ujaOk/P7HH1xMS3N6PV0Af7O5wOvZtmsXvR2OPMcqAbfY7fxv584rCVVEREQKI9veWhGVrZe9sjfL2LfPs57f0j5ZUi4E+PsDGc9e5eUikAb4+fq6PBZvLy+S8hm/FKOrn8ny8fbO8fFyMzLHSuPZsJJQ0PXYgDTDKPB6fLy9sV686HTcajKVyteJiIiIZHJyP2AECURYPXO/LVWypFzo37MnPiYTC52MLyEjybp/yBCXx9Kra1d2ArvyGHMA7wLhYWEuT25CQ0K4rkULFprN5PVg5SbgcHo6vbp0cWkcJaVV06ZUCw11usYfA3agx8035zvPbd268YHFQnoeY8eA9YZBr665b7AUERGRUpet0tXU/1BWVcsTbiFUkiXlQkBAAN26dGE+MAeyfoA2gG+BCUDNqlXpdtNNLo/luccew89ioT+QvUl6MjAe+BV4dPx4l8cB8OiECax3OHicjErPJTuAIRYLLaOj6dqpU6nEcqV8fHyY+MADvAXMI+cafw1Msli4s0cP6tepk+88E8eO5ahhMAI4l+34EaCfxUJ4WBiD+/cv6fBFRESkuC7tt5XZAt4T9ttSkiXlxooFC2gWHc0EoBYZzz41BboBXoGB/Lh6danEERgYyMoPPuC42czVQEfgdqAa8BYw9M47eeT++0slln49e/LSf//LiyYTNS0W7gDam81cCwRGRbHy/fdd3m2xJP37gQe4f9gwxgN1LRb6As0sFnoArdu2ZcHLLxc4R+vmzVk0Zw7LvLyoaTbTC7jZZKI+cCokhDWLF1M5MNCl1yEiIiLFkL1ZBsfKdVVLLdwLoBbuZc/HK1Yw4/XXiYuPp3JgICMHDWLygw/i5VW6jxgmnD3L5Oee48v160lPT6dhvXq8+OSTdGjdulTjADh45AjzP/qI3/fvp1JAAP179qRfz57l5nms3Lbv2sWCjz/m6PHjXBUayuD+/el2441FShhPnT7N2x99xC87d+Lt40OPm2/m3n79yk07exERkQotIYHYeK+MFvDZ9tty97Na2ierhCjJEhERERFxg8yNjbMaYxCOv797G2NonywRERERESm/ynFjDCVZIiIiIiJSdpXDxhhKskREREREpOwrR40xlGSJiIiIiEj5kO0WwuxVrX37ylZVq3TbsYmIiIiIiFypsDAiSCDCeujvxhjx4Vit7m2McYkqWSIiIiIiUv6U4cYYSrJERERERKT8KoONMZRkiYiIiIhI+VeGGmMoyRIREREREc9QRhpjqPGFiIiIiIh4Fjc3xlAlS0REREREPI8bG2MoyRIREREREc/lhsYYSrJERERERMTzlWJjDCVZIiIiIiJSMZRSYww1vhARERERkYrFxY0xVMkSEREREZGKx4WNMZRkiYiIiIhIxeWCxhhKskREREREREqwMYaSLBERERERESixxhhqfCEiIiIiIpKdk8YYDkfh3q4kS0REREREJLewsIxkKyEj2dptgzhb4bIsJVkiIiIiIiLOZCZbTWMO4X3eu1BvUZIlIiIiIiJSkKgoaoRZC3WqGl+IiIiIiIiUICVZIiIiIiIiJUi3CxbAMAwAkpKT3RyJiIiIiIi406Wc4FKO4IySrAJYrRn3XUa2aePmSEREREREpCywWq0EBwc7HTcZBaVhFZzD4SA2NpbKlStjMpnyPTcpKYnIyEiOHz9OUFBQKUUoBdG6lE1al7JJ61I2aV3KJq1L2aR1KZs8ZV0Mw8BqtRIREYHZ7PzJK1WyCmA2m6lVq1aR3hMUFFSuv3g8ldalbNK6lE1al7JJ61I2aV3KJq1L2eQJ65JfBesSNb4QEREREREpQUqyRERERERESpCSrBLk6+vL1KlT8fX1dXcoko3WpWzSupRNWpeySetSNmldyiatS9lU0dZFjS9ERERERERKkCpZIiIiIiIiJUhJloiIiIiISAlSkiUiIiIiIlKClGSJiIiIiIiUICVZVyghIYHBgwcTFBRESEgIo0aNIjk5uVDvNQyDnj17YjKZWLFihWsDrWCKui4JCQlMmDCBxo0b4+/vT+3atXnooYdITEwsxag9z9y5c6lTpw5+fn60b9+en3/+Od/zly1bRnR0NH5+fjRr1owvv/yylCKtWIqyLvPnz6dTp06EhoYSGhpK165dC1xHKZ6i/n25ZPHixZhMJvr27evaACuooq7LuXPnGD9+PDVq1MDX15dGjRrp3zIXKOq6vPLKK1nf4yMjI5k4cSIXLlwopWg938aNG+nduzcRERGF/rl2w4YNXHvttfj6+tKgQQMWLlzo8jhLlSFXpEePHkaLFi2Mn376yfjhhx+MBg0aGPfcc0+h3jt79myjZ8+eBmAsX77ctYFWMEVdl127dhn9+/c3Vq5caRw8eNBYt26d0bBhQ+POO+8sxag9y+LFiw0fHx/jnXfeMX7//XdjzJgxRkhIiHH69Ok8z9+8ebNhsViMF1980dizZ4/x5JNPGt7e3sauXbtKOXLPVtR1uffee425c+caO3bsMPbu3WuMGDHCCA4ONk6cOFHKkXu2oq7LJUeOHDFq1qxpdOrUyejTp0/pBFuBFHVdLl68aLRp08a47bbbjE2bNhlHjhwxNmzYYOzcubOUI/dsRV2XRYsWGb6+vsaiRYuMI0eOGF9//bVRo0YNY+LEiaUcuef68ssvjSeeeML47LPPCvVz7eHDh42AgABj0qRJxp49e4zXX3/dsFgsxpo1a0on4FKgJOsK7NmzxwCMX375JevYV199ZZhMJuPkyZP5vnfHjh1GzZo1jVOnTinJKmFXsi7ZLV261PDx8THS0tJcEabHa9eunTF+/PisP9vtdiMiIsKYMWNGnucPHDjQ6NWrV45j7du3N+677z6XxlnRFHVdcktPTzcqV65svPfee64KsUIqzrqkp6cbHTt2NN5++21j+PDhSrJcoKjr8sYbbxj16tUzUlNTSyvECqmo6zJ+/HjjlltuyXFs0qRJxvXXX+/SOCuqwvxc++ijjxrXXHNNjmODBg0yunfv7sLISpduF7wCW7ZsISQkhDZt2mQd69q1K2azma1btzp9X0pKCvfeey9z586levXqpRFqhVLcdcktMTGRoKAgvLy8XBGmR0tNTWXbtm107do165jZbKZr165s2bIlz/ds2bIlx/kA3bt3d3q+FF1x1iW3lJQU0tLSCAsLc1WYFU5x1+Xpp58mPDycUaNGlUaYFU5x1mXlypV06NCB8ePHU61aNZo2bcpzzz2H3W4vrbA9XnHWpWPHjmzbti3rlsLDhw/z5Zdfctttt5VKzHK5ivA9Xz89XoG4uDjCw8NzHPPy8iIsLIy4uDin75s4cSIdO3akT58+rg6xQiruumR35swZnnnmGcaOHeuKED3emTNnsNvtVKtWLcfxatWqsW/fvjzfExcXl+f5hV0zKVhx1iW3xx57jIiIiMu+OUrxFWddNm3axIIFC9i5c2cpRFgxFWddDh8+zPr16xk8eDBffvklBw8eZNy4caSlpTF16tTSCNvjFWdd7r33Xs6cOcMNN9yAYRikp6dz//3385///Kc0QpY8OPuen5SUhM1mw9/f302RlRxVsvIwefJkTCZTvq/C/kCS28qVK1m/fj2vvPJKyQZdAbhyXbJLSkqiV69eNGnShKeeeurKAxfxEM8//zyLFy9m+fLl+Pn5uTucCstqtTJ06FDmz59PlSpV3B2OZONwOAgPD+f//u//aN26NYMGDeKJJ57gzTffdHdoFdqGDRt47rnnmDdvHtu3b+ezzz5j9erVPPPMM+4OTTyYKll5eOSRRxgxYkS+59SrV4/q1asTHx+f43h6ejoJCQlObwNcv349hw4dIiQkJMfxO++8k06dOrFhw4YriNyzuXJdLrFarfTo0YPKlSuzfPlyvL29rzTsCqlKlSpYLBZOnz6d4/jp06edrkH16tWLdL4UXXHW5ZKZM2fy/PPP8+2339K8eXNXhlnhFHVdDh06xNGjR+ndu3fWMYfDAWRU7ffv30/9+vVdG3QFUJy/LzVq1MDb2xuLxZJ17OqrryYuLo7U1FR8fHxcGnNFUJx1+e9//8vQoUMZPXo0AM2aNeP8+fOMHTuWJ554ArNZNYfS5ux7flBQkEdUsUCVrDxVrVqV6OjofF8+Pj506NCBc+fOsW3btqz3rl+/HofDQfv27fOce/Lkyfz222/s3Lkz6wXw8ssv8+6775bG5ZVbrlwXyKhg3Xrrrfj4+LBy5Ur9pv4K+Pj40Lp1a9atW5d1zOFwsG7dOjp06JDnezp06JDjfIC1a9c6PV+KrjjrAvDiiy/yzDPPsGbNmhzPOkrJKOq6REdHs2vXrhzfR+644w46d+7Mzp07iYyMLM3wPVZx/r5cf/31HDx4MCvpBfjjjz+oUaOGEqwSUpx1SUlJuSyRupQIG4bhumDFqQrxPd/dnTfKux49ehitWrUytm7damzatMlo2LBhjlbhJ06cMBo3bmxs3brV6Ryou2CJK+q6JCYmGu3btzeaNWtmHDx40Dh16lTWKz093V2XUa4tXrzY8PX1NRYuXGjs2bPHGDt2rBESEmLExcUZhmEYQ4cONSZPnpx1/ubNmw0vLy9j5syZxt69e42pU6eqhbsLFHVdnn/+ecPHx8f45JNPcvy9sFqt7roEj1TUdclN3QVdo6jrcuzYMaNy5crGgw8+aOzfv99YtWqVER4ebkyfPt1dl+CRirouU6dONSpXrmx8/PHHxuHDh41vvvnGqF+/vjFw4EB3XYLHsVqtxo4dO4wdO3YYgDF79mxjx44dRkxMjGEYhjF58mRj6NChWedfauH+73//29i7d68xd+5ctXCXnP766y/jnnvuMQIDA42goCBj5MiROX74OHLkiAEY3333ndM5lGSVvKKuy3fffWcAeb6OHDninovwAK+//rpRu3Ztw8fHx2jXrp3x008/ZY3ddNNNxvDhw3Ocv3TpUqNRo0aGj4+Pcc011xirV68u5YgrhqKsS1RUVJ5/L6ZOnVr6gXu4ov59yU5JlusUdV1+/PFHo3379oavr69Rr14949lnn9Uv61ygKOuSlpZmPPXUU0b9+vUNPz8/IzIy0hg3bpxx9uzZ0g/cQzn7OerSOgwfPty46aabLntPy5YtDR8fH6NevXrGu+++W+pxu5LJMFQnFRERERERKSl6JktERERERKQEKckSEREREREpQUqyRERERERESpCSLBERERERkRKkJEtERERERKQEKckSEREREREpQUqyRERERERESpCSLBERERERkRKkJEtERERERKQEKckSEZFyYcSIEZhMpsteBw8eLJH5Fy5cSEhISInMVVwbN26kd+/eREREYDKZWLFihVvjERGR4lGSJSIi5UaPHj04depUjlfdunXdHdZl0tLSivW+8+fP06JFC+bOnVvCEYmISGlSkiUiIuWGr68v1atXz/GyWCwAfP7551x77bX4+flRr149pk2bRnp6etZ7Z8+eTbNmzahUqRKRkZGMGzeO5ORkADZs2MDIkSNJTEzMqpA99dRTAHlWlEJCQli4cCEAR48exWQysWTJEm666Sb8/PxYtGgRAG+//TZXX301fn5+REdHM2/evHyvr2fPnkyfPp1+/fqVwGdLRETcxcvdAYiIiFypH374gWHDhvHaa6/RqVMnDh06xNixYwGYOnUqAGazmddee426dety+PBhxo0bx6OPPsq8efPo2LEjr7zyClOmTGH//v0ABAYGFimGyZMnM2vWLFq1apWVaE2ZMoU5c+bQqlUrduzYwZgxY6hUqRLDhw8v2U+AiIiUKUqyRESk3Fi1alWO5Kdnz54sW7aMadOmMXny5KzkpV69ejzzzDM8+uijWUnWww8/nPW+OnXqMH36dO6//37mzZuHj48PwcHBmEwmqlevXqzYHn74Yfr375/156lTpzJr1qysY3Xr1mXPnj289dZbSrJERDyckiwRESk3OnfuzBtvvJH150qVKgHw66+/snnzZp599tmsMbvdzoULF0hJSSEgIIBvv/2WGTNmsG/fPpKSkkhPT88xfqXatGmT9f/nz5/n0KFDjBo1ijFjxmQdT09PJzg4+Io/loiIlG1KskREpNyoVKkSDRo0uOx4cnIy06ZNy1FJusTPz4+jR49y++2388ADD/Dss88SFhbGpk2bGDVqFKmpqfkmWSaTCcMwchzLq7HFpYTvUjwA8+fPp3379jnOu/QMmYiIeC4lWSIiUu5de+217N+/P88EDGDbtm04HA5mzZqF2ZzR82np0qU5zvHx8cFut1/23qpVq3Lq1KmsPx84cICUlJR846lWrRoREREcPnyYwYMHF/VyRESknFOSJSIi5d6UKVO4/fbbqV27NgMGDMBsNvPrr7+ye/dupk+fToMGDUhLS+P111+nd+/ebN68mTfffDPHHHXq1CE5OZl169bRokULAgICCAgI4JZbbmHOnDl06NABu93OY489hre3d4ExTZs2jYceeojg4GB69OjBxYsX+d///sfZs2eZNGlSnu9JTk7Ose/XkSNH2LlzJ2FhYdSuXfvKPkkiIlJq1MJdRETKve7du7Nq1Sq++eYb2rZty3XXXcfLL79MVFQUAC1atGD27Nm88MILNG3alEWLFjFjxowcc3Ts2JH777+fQYMGUbVqVV588UUAZs2aRWRkJJ06deLee+/lX//6V6Ge4Ro9ejRvv/027777Ls2aNeOmm25i4cKF+e7r9b///Y9WrVrRqlUrACZNmkSrVq2YMmVKcT81IiLiBiYj943mIiIiIiIiUmyqZImIiIiIiJQgJVkiIiIiIiIlSEmWiIiIiIhICVKSJSIiIiIiUoKUZImIiIiIiJQgJVkiIiIiIiIlSEmWiIiIiIhICVKSJSIiIiIiUoKUZImIiIiIiJQgJVkiIiIiIiIlSEmWiIiIiIhICfp/D+ktbB0OiQ8AAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAI4CAYAAACY3iN4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmC0lEQVR4nOzdd3gUVRfA4d9uSG+UhEBCD1WkaCD03kvoVSNNpaogShMQEAEVxUoRlCJB6QiIH53QIfQOobdQQoAESN+93x8ha5bsppFKzvs8+ygzd+6cmdkke/beOaNRSimEEEIIIYQQQqQLbVYHIIQQQgghhBCvEkmyhBBCCCGEECIdSZIlhBBCCCGEEOlIkiwhhBBCCCGESEeSZAkhhBBCCCFEOpIkSwghhBBCCCHSkSRZQgghhBBCCJGOJMkSQgghhBBCiHQkSZYQQgghhBBCpCNJsoTIAg0bNqRhw4aGf/v7+6PRaFi5cmWS2y1cuBCNRsO1a9cyNsBXwIvnODv0n5XXT6PR8MEHH2T6ftNDdn7ft27dmvfffz+rw3gp165dQ6PRsHDhwqwORYhsJSQkBHt7e/7999+sDkXkQJJkCZFCp06dokuXLhQvXhwbGxs8PDxo1qwZP//8c5bGNWvWrFR9OIr/wHr48OGMC0qIXGDv3r1s3ryZUaNGGZaZ+sJk3759TJw4kcePH2dBlP/5888/+eGHH7I0hvQ0e/ZsunbtSrFixdBoNPTp08dku/jfeaZed+/efek4Zs2ahUajoUaNGi/dl4Bz587RsmVLHBwcyJ8/P++88w7BwcEp2vbp06cMGzaMIkWKYG1tTYUKFZg9e3ay273//vtoNBratm1rtLxAgQK89957jB8/Pk3HInK3PFkdgBA5wb59+2jUqBHFihXj/fffp1ChQty8eZMDBw7w448/8uGHH6aqv82bN6cpjnfeeYcePXpgbW1tWDZr1ixcXFzMfsAQGSMt19DU9RM51/Tp02nSpAmlS5dOst2+ffuYNGkSffr0IW/evJkTnAl//vknp0+fZtiwYUbLixcvTkREBJaWllkTWBp9/fXXPHnyBG9vb+7cuZNs+y+++IKSJUsaLUuP67FkyRJKlChBQEAAly5dSvb9IMy7desW9evXx9nZmalTp/L06VO+/fZbTp06RUBAAFZWVma31el0tGjRgsOHDzNkyBDKlCnDpk2bGDx4MI8ePeKzzz4zud3hw4dZuHAhNjY2JtcPHDiQn376ie3bt9O4ceN0OU6RO0iSJUQKTJkyBWdnZw4dOpToj/L9+/dT3V9SfyiSYmFhgYWFRZq2zW5iY2PR6/VpPhdZLS1xv0rXLycLDw/Hzs7upfq4f/8+GzZsYM6cOekUVeqlx3FA3FRScx8ws7OdO3caRrEcHBySbd+qVSuqVauWrjFcvXqVffv2sXr1agYMGMCSJUuYMGFCuu4jvTx79gx7e/usDiNJU6dO5dmzZxw5coRixYoB4O3tTbNmzVi4cCH9+/c3u+3q1avZt28fv//+O/369QNg0KBBdOnShcmTJ/Pee+9RsGBBo22UUnz00Uf06tWLbdu2mey3QoUKvP766yxcuFCSLJEqMl1QiBS4fPkyFStWNPmt54u/tAH8/Pzw9vbGzs6OfPnyUb9+faORj5TczxMVFUXbtm1xdnZm3759QOJ7U0qUKMGZM2fYuXOnYfpLet2HdPv2bfr164ebmxvW1tZUrFiR+fPnG7WJjo7m888/x8vLC2dnZ+zt7alXrx47duwwahd/z8e3337LDz/8gKenJ9bW1pw9e5aJEyei0Wi4dOmS4Zt+Z2dn+vbtS3h4eIpinTt3Lp6entja2uLt7c3u3btNtouKimLChAmULl0aa2trihYtysiRI4mKikrUNi3X8Oeff6ZixYqGbapVq8aff/5pWG/u3qJZs2ZRsWJFrK2tcXd3Z8iQIYmmljVs2JDXX3+ds2fP0qhRI+zs7PDw8OCbb75J0TmKt2TJEsqVK4eNjQ1eXl7s2rUrUZtjx47RqlUrnJyccHBwoEmTJhw4cMCoTfx1e5GpYyxRogRt27Zlz549eHt7Y2NjQ6lSpfjjjz8SbX/mzBkaN26Mra0tRYoU4csvv0Sv1ydqt3btWtq0aYO7uzvW1tZ4enoyefJkdDqdUbv483bkyBHq16+PnZ0dn332Gb1798bFxYWYmJhEfTdv3pxy5cqZPYcAGzZsIDY2lqZNmybZbuLEiYwYMQKAkiVLGn5OE54fPz8/vLy8sLW1JX/+/PTo0YObN2+m6DhSei4aNmzIhg0buH79uiGGEiVKAObvydq+fTv16tXD3t6evHnz0r59e86dO5fo+FL687tlyxbq1q1L3rx5cXBwoFy5colGF27cuMH58+eTPKfxihcvbvI9mJQnT54keo+8jCVLlpAvXz7atGlDly5dWLJkicl2jx8/5uOPP6ZEiRJYW1tTpEgRevXqxYMHDwxtIiMjmThxImXLlsXGxobChQvTqVMnLl++DPw3FdXf39+ob1PXr0+fPjg4OHD58mVat26No6Mjb7/9NgC7d+82TLOM/z348ccfExERkSju8+fP061bN1xdXbG1taVcuXKMHTsWgB07dqDRaFizZk2i7f788080Gg379+8nNDSU8+fPExoamuz5XLVqFW3btjUkWABNmzalbNmyLF++PMlt43/v9+jRw2h5jx49iIyMZO3atYm2Wbx4MadPn2bKlClJ9t2sWTPWr1+PUirZYxAinoxkCZECxYsXZ//+/Zw+fZrXX389ybaTJk1i4sSJ1K5dmy+++AIrKysOHjzI9u3bad68eYr2FxERQfv27Tl8+DBbt26levXqJtv98MMPfPjhhzg4OBj+8Lm5uaXu4Ey4d+8eNWvWNBRLcHV15X//+x/vvvsuYWFhhulGYWFh/Pbbb/Ts2ZP333+fJ0+e8Pvvv9OiRQsCAgKoWrWqUb8LFiwgMjKS/v37Y21tTf78+Q3runXrRsmSJZk2bRpHjx7lt99+o2DBgnz99ddJxvr7778zYMAAateuzbBhw7hy5Qrt2rUjf/78FC1a1NBOr9fTrl079uzZQ//+/alQoQKnTp3i+++/JzAwkL///tvQNi3XcN68eXz00Ud06dKFoUOHEhkZycmTJzl48CBvvfWW2fgnTpzIpEmTaNq0KYMGDeLChQvMnj2bQ4cOsXfvXqMpXI8ePaJly5Z06tSJbt26sXLlSkaNGkWlSpVo1apVkucJ4r75X7ZsGR999BHW1tbMmjWLli1bEhAQYHhfnzlzhnr16uHk5MTIkSOxtLTk119/pWHDhuzcuTPN951cunSJLl268O6779K7d2/mz59Pnz598PLyomLFigDcvXuXRo0aERsby+jRo7G3t2fu3LnY2tom6m/hwoU4ODgwfPhwHBwc2L59O59//jlhYWFMnz7dqG1ISAitWrWiR48e+Pr64ubmhr29PX/88QebNm0yug/j7t27bN++PdnRiH379lGgQAGKFy+eZLtOnToRGBjIX3/9xffff4+LiwsArq6uQNwo+fjx4+nWrRvvvfcewcHB/Pzzz9SvX59jx44ZfbFj6jhSei7Gjh1LaGgot27d4vvvvwdIcvRn69attGrVilKlSjFx4kQiIiL4+eefqVOnDkePHjUkaPGS+/k9c+YMbdu2pXLlynzxxRdYW1tz6dIl9u7da9RPr1692LlzZ4Z8mG3UqBFPnz7FysqKFi1a8N1331GmTJmX6nPJkiV06tQJKysrevbsafjZTfg7++nTp9SrV49z587Rr18/3nzzTR48eMC6deu4desWLi4u6HQ62rZty7Zt2+jRowdDhw7lyZMnbNmyhdOnT+Pp6Znq2GJjY2nRogV169bl22+/NYx6rlixgvDwcAYNGkSBAgUICAjg559/5tatW6xYscKw/cmTJ6lXrx6Wlpb079+fEiVKcPnyZdavX8+UKVNo2LAhRYsWZcmSJXTs2DHRefH09KRWrVosXLiQvn37smDBgiSntd++fZv79++bHG309vZOtvhEVFQUFhYWiWYZxB/3kSNHjIrUPHnyhFGjRvHZZ59RqFChJPv28vLi+++/58yZM8l+BhDCQAkhkrV582ZlYWGhLCwsVK1atdTIkSPVpk2bVHR0tFG7ixcvKq1Wqzp27Kh0Op3ROr1eb/j/Bg0aqAYNGhj+vWPHDgWoFStWqCdPnqgGDRooFxcXdezYMaM+FixYoAB19epVw7KKFSsa9ZWc+D4OHTpkts27776rChcurB48eGC0vEePHsrZ2VmFh4crpZSKjY1VUVFRRm0ePXqk3NzcVL9+/QzLrl69qgDl5OSk7t+/b9R+woQJCjBqr5RSHTt2VAUKFEjyWKKjo1XBggVV1apVjeKYO3euAozOy+LFi5VWq1W7d+826mPOnDkKUHv37lVKpf0atm/fXlWsWDHJeF+8fvfv31dWVlaqefPmRvv65ZdfFKDmz59vtD9A/fHHH4ZlUVFRqlChQqpz585J7lcppQAFqMOHDxuWXb9+XdnY2KiOHTsalnXo0EFZWVmpy5cvG5YFBQUpR0dHVb9+fcOy+OuW3DEqpVTx4sUVoHbt2mVYdv/+fWVtba0++eQTw7Jhw4YpQB08eNConbOzc6I+49+DCQ0YMEDZ2dmpyMhIw7L48zZnzhyjtjqdThUpUkR1797daPmMGTOURqNRV65cSdR/QnXr1lVeXl6Jlif8WY43ffr0RPErpdS1a9eUhYWFmjJlitHyU6dOqTx58hgtN3ccSqX8XLRp00YVL148Udv4n88FCxYYllWtWlUVLFhQhYSEGJadOHFCabVa1atXL8OylP78fv/99wpQwcHBifafUPxxppa9vb3q3bu3yXXLli1Tffr0UYsWLVJr1qxR48aNU3Z2dsrFxUXduHEj1fuKd/jwYQWoLVu2KKXifj8UKVJEDR061Kjd559/rgC1evXqRH3E/06ZP3++AtSMGTPMtol/b+3YscNovanr17t3bwWo0aNHJ+rP1Ptl2rRpSqPRqOvXrxuW1a9fXzk6OhotSxiPUkqNGTNGWVtbq8ePHxuW3b9/X+XJk0dNmDBBKfXf74SE8Zly6NChRL/j4o0YMUIBRu/nF3333XcKSPQ7fvTo0QpQbdu2NVr+6aefqpIlSxr6LF68uGrTpo3Jvvft26cAtWzZsiSPQYiEZLqgECnQrFkz9u/fT7t27Thx4gTffPMNLVq0wMPDg3Xr1hna/f333+j1ej7//HO0WuMfr5RMawkNDaV58+acP38ef3//RCNBmUEpxapVq/Dx8UEpxYMHDwyvFi1aEBoaytGjRwGMvjXU6/U8fPiQ2NhYqlWrZmiTUOfOnQ3f4L9o4MCBRv+uV68eISEhhIWFmY318OHD3L9/n4EDBxp9e9mnTx+cnZ2N2q5YsYIKFSpQvnx5o2OKn2MfP8Uxrdcwb9683Lp1i0OHDplt86KtW7cSHR3NsGHDjPb1/vvv4+TkxIYNG4zaOzg44Ovra/i3lZUV3t7eXLlyJUX7q1WrFl5eXoZ/FytWjPbt27Np0yZ0Oh06nY7NmzfToUMHSpUqZWhXuHBh3nrrLfbs2ZPk9UjKa6+9Rr169Qz/dnV1pVy5ckax//vvv9SsWRNvb2+jdvHTnBJKOLr15MkTHjx4QL169QgPD0803cza2pq+ffsaLdNqtbz99tusW7eOJ0+eGJYvWbKE2rVrJyqQ8KKQkBDy5cuXzFEnbfXq1ej1erp162b0nixUqBBlypRJNO3W1HFA6s5FSty5c4fjx4/Tp08fo9HmypUr06xZM5MjCsn9/MaPyK1du9bk9M94/v7+6T6K1a1bNxYsWECvXr3o0KEDkydPZtOmTYSEhCQ7TSwpS5Yswc3NjUaNGgFxvx+6d+/O0qVLjaYkrlq1iipVqiQa7YnfJr6Ni4uLySJKqZ0SmdCgQYMSLUv4fnn27BkPHjygdu3aKKU4duwYAMHBwezatYt+/foZTd17MZ5evXoRFRVlVE1z2bJlxMbGGn5X9enTB6VUssWZ4qcrmioMFH/PoKkpjfHeeustnJ2d6devH1u2bOHatWvMnTuXWbNmJdo2MDCQH3/8kenTp6eoEFH8z3rC6Z1CJEeSLCFSqHr16qxevZpHjx4REBDAmDFjePLkCV26dOHs2bNA3L1bWq2W1157LU37GDZsGIcOHWLr1q2GKVRpodPpuHv3rtErOjo6RdsGBwfz+PFj5s6di6urq9Er/gNewmIfixYtonLlytjY2FCgQAFcXV3ZsGGDyfn3SX1wffEPefwftUePHpnd5vr16wCJpvxYWloaJQkAFy9e5MyZM4mOqWzZskbHlNZrOGrUKBwcHPD29qZMmTIMGTIk0VQoc/G/eP+PlZUVpUqVMqyPV6RIkUQfuPLly5fkOUrI1NSosmXLEh4eTnBwMMHBwYSHh5u8H6lChQro9fpE9wql1IvXFxLHfv36dZMxmornzJkzdOzYEWdnZ5ycnHB1dTV8qHvxvefh4WGyUEmvXr2IiIgw3FNy4cIFjhw5wjvvvJOiY3rZZODixYsopShTpkyi9+W5c+cSFdUxdxypORcpYe59CXHvgwcPHvDs2TOj5cn9/Hbv3p06derw3nvv4ebmRo8ePVi+fHmSCVdGqlu3LjVq1GDr1q1p2l6n07F06VIaNWrE1atXuXTpEpcuXaJGjRrcu3fPqIjC5cuXk51idvnyZcqVK0eePOl3F0eePHkoUqRIouU3btwwJNAODg64urrSoEED4L/3S/yXH8nFXb58eapXr250L9qSJUuoWbNmqqssxid/pu6RjYyMNGpjSqFChVi3bh1RUVE0b96ckiVLMmLECMNjVhJOjx06dCi1a9emc+fOKYot/mf9ZRJekfvIPVlCpJKVlRXVq1enevXqlC1blr59+7JixYp0qSjVvn17li5dyldffcUff/yRaCQlpW7evJkoodmxY0eKimLEf+jx9fWld+/eJttUrlwZiLthv0+fPnTo0IERI0ZQsGBBLCwsmDZtmuFm7YSS+gNprupeen2rrdfrqVSpEjNmzDC5PuH9W2lRoUIFLly4wD///MPGjRtZtWoVs2bN4vPPP2fSpEkv1Xe8jD5HqWHuw4a5ogLpGfvjx49p0KABTk5OfPHFF3h6emJjY8PRo0cZNWpUog/u5t53r732Gl5eXvj5+dGrVy/8/PywsrKiW7duycZQoECBFCe35uj1ejQaDf/73/9Mnp8X75kydRypPRcZJbnra2try65du9ixYwcbNmxg48aNLFu2jMaNG7N58+YsqbpZtGhRLly4kKZtt2/fzp07d1i6dClLly5NtH7JkiUpvgc3pVL7M2dtbZ3ob4hOp6NZs2Y8fPiQUaNGUb58eezt7bl9+zZ9+vRJ0/ulV69eDB06lFu3bhEVFcWBAwf45ZdfUt1P4cKFAUyW479z5w758+dPdtSpfv36XLlyhVOnTvHs2TOqVKlCUFAQgOELte3bt7Nx40ZWr15tVIAmNjaWiIgIrl27Rv78+XFycjKsi/9Zj7+nUoiUkCRLiJcQf4Nu/B8FT09P9Ho9Z8+eTdNUvw4dOtC8eXP69OmDo6Njih6iaOoPb6FChdiyZYvRsipVqqQoBldXVxwdHdHpdMlWTlu5ciWlSpVi9erVRnFkVgnj+KIDFy9eNCqtGxMTw9WrV42O2dPTkxMnTtCkSZMkv418mWtob29P9+7d6d69O9HR0XTq1IkpU6YwZswYkyWy4+O/cOGC0chbdHQ0V69eTfb8p9bFixcTLQsMDMTOzs4wjdPOzs7kB8/z58+j1WoNyWj8SMXjx4+NijO8OPqWGsWLFzcZ44vx+Pv7ExISwurVq6lfv75h+dWrV1O9z169ejF8+HDu3LnDn3/+SZs2bVI0DbB8+fKsWrUqRfsw937z9PREKUXJkiUNHwBTKzXnIqXfwid8X77o/PnzuLi4pKkUuFarpUmTJjRp0oQZM2YwdepUxo4dy44dO9L9vZ4SV65cMTt9OTlLliyhYMGCzJw5M9G61atXs2bNGubMmYOtrS2enp6cPn06yf48PT05ePAgMTExZp9XlvBnLqHU/MydOnWKwMBAFi1aRK9evQzLX/x7Ef/7KLm4Ia563/Dhw/nrr78Mz1vr3r17imOK5+HhgaurK4cPH060zlQhJXMsLCyM2saPVsa/x27cuAHEFaV50e3btylZsiTff/+90fPk4n+eKlSokKIYhACZLihEiuzYscPkN+7x9ybET6vp0KEDWq2WL774ItE3gin9xr5Xr1789NNPzJkzh1GjRiXb3t7ePtEfXRsbG5o2bWr0Sun9IxYWFnTu3JlVq1aZ/AMbHBxs1BaMj+3gwYPs378/Rft6WdWqVcPV1ZU5c+YYTYdcuHBhonPSrVs3bt++zbx58xL1ExERYZj+lNZrGBISYvRvKysrXnvtNZRSJsuEQ9wffSsrK3766Sejvn///XdCQ0Np06aN2f2lxf79+43ulbt58yZr166lefPmhmd4NW/enLVr1xp9w3vv3j3+/PNP6tata/h2N77aWcIS8M+ePWPRokVpjq9169YcOHCAgIAAw7Lg4OBEZbFNve+io6MN916kRs+ePdFoNAwdOpQrV64Y3fOWlFq1avHo0aMU3Q8Xn5C8+J7s1KkTFhYWTJo0KdF7SymV6D1lSmrOhb29fYqmDxYuXJiqVauyaNEio5hPnz7N5s2bad26dbJ9vOjhw4eJlsV/EE44PSw1JdxTKuHvrHj//vsvR44coWXLlqnuLyIigtWrV9O2bVu6dOmS6PXBBx/w5MkTw/26nTt35sSJEyZLncdft86dO/PgwQOTI0DxbYoXL46FhUWixy6k5n1v6v2ilOLHH380aufq6kr9+vWZP3++ISl5MZ54Li4utGrVCj8/P5YsWULLli2NRnxSU8K9c+fO/PPPP0bTkrdt20ZgYCBdu3Y1LIuJieH8+fPJPoQ6ODiYr7/+msqVKxuSrMaNG7NmzZpEL1dXV6pVq8aaNWvw8fEx6ufIkSM4Ozu/1DR+kfvISJYQKfDhhx8SHh5Ox44dKV++PNHR0ezbt49ly5ZRokQJw71KpUuXZuzYsUyePJl69erRqVMnrK2tOXToEO7u7kybNi1F+/vggw8ICwtj7NixODs7m31SPcSVlp09ezZffvklpUuXpmDBgil6YOL8+fPZuHFjouVDhw7lq6++YseOHdSoUYP333+f1157jYcPH3L06FG2bt1q+MDUtm1bVq9eTceOHWnTpg1Xr15lzpw5vPbaazx9+jRFx/oyLC0t+fLLLxkwYACNGzeme/fuXL16lQULFiS6J+udd95h+fLlDBw4kB07dlCnTh10Oh3nz59n+fLlbNq0iWrVqqX5GjZv3pxChQpRp04d3NzcOHfuHL/88gtt2rTB0dHR5Daurq6MGTOGSZMm0bJlS9q1a8eFCxeYNWsW1atXT/EH/pR6/fXXadGihVEJd8BoOuOXX35peJ7R4MGDyZMnD7/++itRUVFGz+Rq3rw5xYoV491332XEiBFYWFgwf/58XF1dE30oS6mRI0eyePFiWrZsydChQw0l3IsXL87JkycN7WrXrk2+fPno3bs3H330ERqNhsWLF6dp6qGrqystW7ZkxYoV5M2bN8WJbZs2bciTJw9bt25N8gGpgKHYyNixY+nRoweWlpb4+Pjg6enJl19+yZgxY7h27RodOnTA0dGRq1evsmbNGvr378+nn36aZN+pORdeXl4sW7aM4cOHU716dRwcHBJ9mIw3ffp0WrVqRa1atXj33XcNJdydnZ2ZOHFiis5RQl988QW7du2iTZs2FC9enPv37zNr1iyKFClC3bp1De1SU8J9/fr1nDhxAoj70H3y5Em+/PJLANq1a2eY1ly7dm3eeOMNqlWrhrOzM0ePHmX+/PkULVo00e/WPn36sGjRIq5evZqoTH28+GIp7dq1M7m+Zs2auLq6smTJErp3786IESNYuXIlXbt2pV+/fnh5efHw4UPWrVvHnDlzqFKlCr169eKPP/5g+PDhBAQEUK9ePZ49e8bWrVsZPHgw7du3x9nZma5du/Lzzz+j0Wjw9PTkn3/+SXTvXlLKly+Pp6cnn376Kbdv38bJyYlVq1aZnPr6008/UbduXd5880369+9PyZIluXbtGhs2bOD48eNGbXv16kWXLl0AmDx5stG6NWvWpKiEO8Bnn33GihUraNSoEUOHDuXp06dMnz6dSpUqGRV9uX37NhUqVKB3795Gzwdr0KABtWrVonTp0ty9e5e5c+fy9OlT/vnnH8PUyWLFipm8R3TYsGG4ubnRoUOHROu2bNmCj4+P3JMlUicTKhgKkeP973//U/369VPly5dXDg4OysrKSpUuXVp9+OGH6t69e4naz58/X73xxhvK2tpa5cuXTzVo0MBQ5leppEu4JzRy5EgFqF9++UUpZbo89t27d1WbNm2Uo6NjorLlpsT3Ye518+ZNpZRS9+7dU0OGDFFFixZVlpaWqlChQqpJkyZq7ty5hr70er2aOnWqKl68uLK2tlZvvPGG+ueff1Tv3r2NSkXHlxiePn16onjiS0C/WNrZ1LGaM2vWLFWyZEllbW2tqlWrpnbt2pXoHCsVV/L966+/VhUrVjRcGy8vLzVp0iQVGhpq1Da11/DXX39V9evXVwUKFFDW1tbK09NTjRgxwqhfc8f0yy+/qPLlyytLS0vl5uamBg0apB49emTUpkGDBiZLxL94rs0B1JAhQ5Sfn58qU6aM4Xq9WA5aKaWOHj2qWrRooRwcHJSdnZ1q1KiR2rdvX6J2R44cUTVq1FBWVlaqWLFiasaMGWZLuJsqjWzqGp08eVI1aNBA2djYKA8PDzV58mT1+++/J+pz7969qmbNmsrW1la5u7sbHqvACyWuzZ23hJYvX64A1b9//yTbvahdu3aqSZMmRsvM/SxPnjxZeXh4KK1Wm+hYVq1aperWravs7e2Vvb29Kl++vBoyZIi6cOFCio4jpefi6dOn6q233lJ58+ZVgOF9Y6oEuFJKbd26VdWpU0fZ2toqJycn5ePjo86ePWvUJqU/v9u2bVPt27dX7u7uysrKSrm7u6uePXuqwMBAo+1SU8I9vky5qVfCYxk7dqyqWrWqcnZ2VpaWlqpYsWJq0KBB6u7du4n67Ny5s7K1tU3085eQj4+PsrGxUc+ePTPbpk+fPsrS0tLwGIyQkBD1wQcfKA8PD2VlZaWKFCmievfubfSYjPDwcDV27FhVsmRJw+/cLl26GD1OITg4WHXu3FnZ2dmpfPnyqQEDBqjTp0+bLOFub29vMrazZ8+qpk2bKgcHB+Xi4qLef/99deLECZPvgdOnT6uOHTuqvHnzKhsbG1WuXDk1fvz4RH1GRUWpfPnyKWdnZxUREWG0LqUl3BPus3nz5srOzk7lzZtXvf3224muVfx79sWy/R9//LEqVaqUsra2Vq6uruqtt94yOn9JMfd76ty5cwpQW7duTVE/QsTTKCWPrxZCCJF7rV27lg4dOrBr1y6jMvPJ2b17Nw0bNuT8+fMv/VBbkT24ubnRq1evRA+0FkmLjY3F3d0dHx8ffv/996wOJ10NGzaMXbt2ceTIERnJEqkiSZYQQohcrW3btpw7d45Lly6l+kNUq1atKFKkiMl7/UTOcubMGWrVqsWVK1ekilwqxU+H9Pf3N5SDfxWEhIRQvHhxli9fnqZ7EUXuJkmWEEKIXGnp0qWcPHmSadOm8eOPP/LRRx9ldUhC5CgHDx7k5MmTTJ48GRcXF5MPoRcit5IkSwghRK6k0WhwcHCge/fuzJkzJ10fBCtEbtCnTx/8/PyoWrUqCxcuTPbhxULkJpJkCSGEEEIIIUQ6kudkCSGEEEIIIUQ6kiRLCCGEEEIIIdKRJFlCCJGJJk6cmC3KADds2JCGDRumeVu590IIIYQwT5IsIUSmu3btGhqNhm+//TarQxEZKCgoiIkTJ3L8+PEM3U94eDgzZ86kefPmFC5cGEdHR9544w1mz56NTqdLFJOvry/lypXD0dGRvHnz4u3tzaJFi0jJLcpPnz5lwoQJtGzZkvz586PRaFi4cKHJthqNxuyrWbNm6RaTKSEhIUyfPp369evj6upK3rx5qVmzJsuWLUvU1t/f32ycBw4cSNH+bt++Tbdu3cibNy9OTk60b9+eK1euJGo3e/ZsunbtSrFixdBoNPTp08dsn48fP6Z///64urpib29Po0aNMqR63Z07dxg9ejSNGjXC0dERjUaDv79/onbxv7fMvd5///1k95VRx//kyRNGjhxJyZIlsba2xsPDgy5duhAeHp7S0yCESGdSSkkIIXKhzZs3Z/g+goKCmDRpEiVKlKBq1aoZtp8rV67w4Ycf0qRJE4YPH46TkxObNm1i8ODBHDhwgEWLFhnaPnjwgFu3btGlSxeKFStGTEwMW7ZsoU+fPly4cIGpU6cmua8HDx7wxRdfUKxYMapUqWLyw3i8xYsXJ1p2+PBhfvzxR5o3b55uMZmyf/9+xo4dS+vWrRk3bhx58uRh1apV9OjRg7NnzzJp0qRE23z00UdUr17daFnp0qWT3dfTp09p1KgRoaGhfPbZZ1haWvL999/ToEEDjh8/ToECBQxtv/76a548eYK3tzd37twx26der6dNmzacOHGCESNG4OLiwqxZs2jYsCFHjhxJ14c/X7hwga+//poyZcpQqVIl9u/fb7Kdq6uryWu6ceNGlixZYnRNzcmI4w8NDaVBgwbcunWL/v37U7p0aYKDg9m9ezdRUVHY2dml4CwIIdKdEkKITHb16lUFqOnTp2dpHHq9XoWHh2fqPidMmKBy+q/eBg0aqIoVKybb7tChQwpQCxYsyNB4goOD1enTpxMt79u3rwLUxYsXk+2jbdu2yt7eXsXGxibZLjIyUt25c0cplbbje/fdd5VGo1E3b95Mt5hMuXLlirp27ZrRMr1erxo3bqysra3V06dPDct37NihALVixYpU70cppb7++msFqICAAMOyc+fOKQsLCzVmzBijtteuXVN6vV4ppZS9vb3q3bu3yT6XLVuWKKb79++rvHnzqp49e6YpTnPCwsJUSEiIUkqpFStWKEDt2LEjxds3adJEOTk5qYiIiGTbZsTxDxo0SOXNm1dduXIlxTELITKeTBcUQmRbUVFRTJgwgdKlS2NtbU3RokUZOXIkUVFRRu0WLFhA48aNKViwINbW1rz22mvMnj07UX8lSpSgbdu2bNq0iWrVqmFra8uvv/5qmC61fPlypkyZQpEiRbCxsaFJkyZcunQpUT8HDx6kZcuWODs7Y2dnR4MGDdi7d2+idnv27KF69erY2Njg6enJr7/+mqLj/umnn7CwsODx48eGZd999x0ajYbhw4cblul0OhwdHRk1apRhmV6v54cffqBixYrY2Njg5ubGgAEDePTokdE+TN2Tdf36ddq1a4e9vT0FCxbk448/ZtOmTWanT509e5ZGjRphZ2eHh4cH33zzjWGdv7+/YVSkb9++hilV8VPrLl68SOfOnSlUqBA2NjYUKVKEHj16EBoaaujjwYMHnD9/PtkpTy4uLlSsWDHR8o4dOwJw7ty5JLeHuPdGeHg40dHRSbaztramUKFCyfZnSlRUFKtWraJBgwYUKVIk3WIypWTJkhQvXtxomUajoUOHDkRFRZmcygdx085iY2NTta+VK1dSvXp1o1Gw8uXL06RJE5YvX27Utnjx4im6J3HlypW4ubnRqVMnwzJXV1e6devG2rVrE/0OeBmOjo7kz58/TdveuXOHHTt20KlTJ2xsbJJtn97H//jxYxYsWED//v0pWbIk0dHR6XpuhBBpJ0mWECJb0uv1tGvXjm+//RYfHx9+/vlnOnTowPfff0/37t2N2s6ePZvixYvz2Wef8d1331G0aFEGDx7MzJkzE/V74cIFevbsSbNmzfjxxx+NprF99dVXrFmzhk8//ZQxY8Zw4MAB3n77baPtt2/fTv369QkLC2PChAlMnTqVx48f07hxYwICAgztTp06RfPmzbl//z4TJ06kb9++TJgwgTVr1iR77PXq1UOv17Nnzx7Dst27d6PVatm9e7dh2bFjx3j69Cn169c3LBswYAAjRoygTp06/Pjjj/Tt25clS5bQokULYmJizO7z2bNnNG7cmK1bt/LRRx8xduxY9u3bZ5TAJfTo0SNatmxJlSpV+O677yhfvjyjRo3if//7HwAVKlTgiy++AKB///4sXryYxYsXU79+faKjo2nRogUHDhzgww8/ZObMmfTv358rV64YJZa//PILFSpUMDqvqXH37l0gLgl7UUREBA8ePODatWssWrSIBQsWUKtWLWxtbdO0r5T4999/efz4caL3VGbGlNQ56du3L05OTtjY2NCoUSMOHz6cbH96vZ6TJ09SrVq1ROu8vb25fPkyT548SXWcx44d480330SrNf6Y4u3tTXh4OIGBganuMyMsXboUvV5v9pqmVUqPf8+ePURGRlK6dGm6dOmCnZ0dtra21KlTJ8PvhRRCJCOrh9KEELlPSqYLLl68WGm1WrV7926j5XPmzFGA2rt3r2GZqSl/LVq0UKVKlTJaVrx4cQWojRs3Gi2Pny5VoUIFFRUVZVj+448/KkCdOnVKKRU33apMmTKqRYsWhik/8fsvWbKkatasmWFZhw4dlI2Njbp+/bph2dmzZ5WFhUWy0wV1Op1ycnJSI0eONOy3QIECqmvXrsrCwkI9efJEKaXUjBkzlFarVY8ePVJKKbV7924FqCVLlhj1t3HjxkTLGzRooBo0aGD493fffacA9ffffxuWRUREqPLlyyeaPtWgQQMFqD/++MOwLCoqShUqVEh17tzZsMzcdLpjx46laHpa/NTK1EzdShjPa6+9pkqWLKliYmISrZ82bZoCDK8mTZqoGzdupGofqZ0u2LlzZ2VtbW24XhkRU1JCQkJUwYIFVb169YyW7927V3Xu3Fn9/vvvau3atWratGmqQIECysbGRh09ejTJPoODgxWgvvjii0TrZs6cqQB1/vx5k9smNV3O3t5e9evXL9HyDRs2mPwZTi+pnS7o5eWlChcurHQ6Xar3lR7HP2PGDAWoAgUKKG9vb7VkyRI1a9Ys5ebmpvLly6eCgoJSHZcQIn3ISJYQIltasWIFFSpUoHz58jx48MDwaty4MQA7duwwtE34TX9oaCgPHjygQYMGXLlyxWj6GcRNo2rRooXJffbt2xcrKyvDv+vVqwdgmFp1/PhxLl68yFtvvUVISIghpmfPntGkSRN27dqFXq9Hp9OxadMmOnToQLFixQz9VahQwey+E9JqtdSuXZtdu3YBcdPdQkJCGD16NEopw435u3fv5vXXXydv3ryGc+bs7EyzZs2MzpmXlxcODg5G5+xFGzduxMPDg3bt2hmW2djYmK2Y5uDggK+vr+HfVlZWeHt7m52GlpCzszMAmzZtSnIq4MSJE1FKpanU/AcffMDZs2f55ZdfyJMncY2nnj17smXLFv7880/eeustIG4kKaOEhYWxYcMGWrdubbhemRlT/GjL48eP+fnnn43W1a5dm5UrV9KvXz/atWvH6NGjOXDgABqNhjFjxiTZb3x81tbWidbFT59LyzFERESke5/pLTAwkCNHjtCjR49EI04vK6XH//TpUyBuKui2bdt46623GDRoEH///TePHj0yOZovhMgcUl1QCJEtXbx4kXPnzuHq6mpy/f379w3/v3fvXiZMmMD+/fsTfWgPDQ01fKiHuCTLnIQJEUC+fPkADPczXbx4EYDevXub7SM0NJSoqCgiIiJMVkArV64c//77r9nt49WrV4+JEycSERHB7t27KVy4MG+++SZVqlRh9+7dNGvWjD179tCtWzfDNhcvXiQ0NJSCBQua7DPhOXvR9evX8fT0THS/iLnqckWKFEnUNl++fJw8eTLZYytZsiTDhw9nxowZLFmyhHr16tGuXTt8fX2NrlVaTZ8+nXnz5jF58mRat25tsk3x4sUN9yz17NmT/v3707RpUy5cuJAhUwZXrVpFZGRkktPKMjKmDz/8kI0bN/LHH39QpUqVZNuXLl2a9u3bs3r1anQ6HRYWFibbxcdl6j6gyMhIozapYWtrm659RkdH8/DhQ6Nlrq6uZo8rJZYsWQKQ7lMFIeXHH/9fHx8fHBwcDO1q1qxJyZIl2bdvX7rHJoRIGUmyhBDZkl6vp1KlSsyYMcPk+qJFiwJw+fJlmjRpQvny5ZkxYwZFixbFysqKf//9l++//x69Xm+0XVIfzsx94FLPn1UU39f06dPNliR3cHBIlxvP69atS0xMDPv372f37t2GUbV69eqxe/duzp8/T3BwsGF5fHwFCxY0fPh7kbmENS2SO1fJ+e677+jTpw9r165l8+bNfPTRR0ybNo0DBw6kqCiEOQsXLmTUqFEMHDiQcePGpXi7Ll26MG/ePHbt2pWi0cbUWrJkCc7OzrRt2zbTY5o0aRKzZs3iq6++4p133knxdkWLFiU6Oppnz57h5ORksk3+/PmxtrY2WY48fpm7u3uqYy5cuHC69rlv3z4aNWpktOzq1auUKFEi1bHF+/PPPylXrhxeXl5p7sOclB5//H/d3NwStS1YsGCigjdCiMwjSZYQIlvy9PTkxIkTNGnSJMlqXOvXrycqKop169YZjUQlNTXuZWICcHJyomnTpmbbubq6Ymtraxj5SujChQsp2pe3tzdWVlbs3r2b3bt3M2LECADq16/PvHnz2LZtm+HfCePbunUrderUSfU3/cWLF+fs2bMopYzOt6nqiimVXBW1SpUqUalSJcaNG8e+ffuoU6cOc+bM4csvv0zT/tauXct7771Hp06dUj1NKn761YvTS9NDfAW6Pn36mJwClpExzZw5k4kTJzJs2DCzRUzMuXLlCjY2NkYjJC/SarVUqlTJZJGMgwcPUqpUKRwdHVMdd9WqVdm9ezd6vd5oKt7Bgwexs7OjbNmyqeqvSpUqbNmyxWhZWqtExsdx6dIlQ3GX9JbS449P8G7fvp2oj6CgIMqXL58h8Qkhkif3ZAkhsqVu3bpx+/Zt5s2bl2hdREQEz549A/4bUUk4ghIaGsqCBQvSPSYvLy88PT359ttvDfdCJBQcHGyIqUWLFvz999/cuHHDsP7cuXNs2rQpRfuysbGhevXq/PXXX9y4ccNoJCsiIoKffvoJT09PChcubNimW7du6HQ6Jk+enKi/2NhYo8p9L2rRogW3b99m3bp1hmWRkZEmz39K2dvbAyTab1hYWKIy4ZUqVUKr1RqNAqa0hDvArl276NGjB/Xr12fJkiVm75GJv0Yv+v3339FoNLz55ptp2n9SkqtAl5qYUmPZsmV89NFHvP3222ZHhM3t/8SJE6xbt47mzZsbncsbN25w/vx5o7ZdunTh0KFDRonWhQsX2L59O127dk1T7F26dOHevXusXr3asOzBgwesWLECHx+fVCWrEDeVtWnTpkavlJRcN+fPP/8EMNw796Lw8HDOnz/PgwcP0tR/So+/XLlyVKlShbVr1xrta/Pmzdy8eZNmzZqlaf9CiJcnI1lCiCyzbds2wz0GCXXo0IF33nmH5cuXM3DgQHbs2EGdOnXQ6XScP3+e5cuXG5511bx5c6ysrPDx8WHAgAE8ffqUefPmUbBgQZPTbV6GVqvlt99+o1WrVlSsWJG+ffvi4eHB7du32bFjB05OTqxfvx6Im6K1ceNG6tWrx+DBg4mNjeXnn3+mYsWKKbpvCeISqq+++gpnZ2cqVaoExE0BKleuHBcuXKBPnz5G7Rs0aMCAAQOYNm0ax48fp3nz5lhaWnLx4kVWrFjBjz/+SJcuXUzua8CAAfzyyy/07NmToUOHUrhwYZYsWWL4IJqSZ/u8yNPTk7x58zJnzhwcHR2xt7enRo0anDhxgg8++ICuXbtStmxZYmNjWbx4MRYWFnTu3Nmw/S+//MKkSZPYsWNHksUv4p/vpdFo6NKlCytWrDBaX7lyZSpXrgzAlClT2Lt3Ly1btqRYsWI8fPiQVatWcejQIT788EOje9DM7f+XX37h8ePHBAUFAXGjqbdu3QLi7n168b6yJUuW4O7ubvYYUhOTv78/jRo1YsKECUycONHsOQkICKBXr14UKFCAJk2aJJpCWrt2bUqVKgVA9+7dsbW1pXbt2hQsWJCzZ88yd+5c7Ozs+Oqrr4y269WrFzt37jT6UmPw4MHMmzePNm3a8Omnn2JpacmMGTNwc3Pjk08+Mdp+/fr1nDhxAoCYmBhOnjxpGLls166d4Tp16dKFmjVr0rdvX86ePYuLiwuzZs1Cp9MxadIkoz779OnDokWLXmr6X3wMZ86cAWDx4sWGRyi8OO1Up9OxbNkyatasaRjdflFAQIDJ65QRx//999/TrFkz6taty4ABAwgNDWXGjBmULVuWQYMGpel8CCHSQRZWNhRC5FLxJdzNvRYvXqyUUio6Olp9/fXXqmLFisra2lrly5dPeXl5qUmTJqnQ0FBDf+vWrVOVK1dWNjY2qkSJEurrr79W8+fPV4C6evWqoV3x4sVVmzZtEsUTX8L9xZLi8XGaKkHeqVMnVaBAAWVtba2KFy+uunXrprZt22bUbufOncrLy0tZWVmpUqVKqTlz5hjKkqdEfLnmVq1aGS1/7733FKB+//13k9vNnTtXeXl5KVtbW+Xo6KgqVaqkRo4caVTO+cUS7kopdeXKFdWmTRtla2urXF1d1SeffKJWrVqlAHXgwAGjbStWrJhov71791bFixc3WrZ27Vr12muvqTx58hjO5ZUrV1S/fv2Up6ensrGxUfnz51eNGjVSW7duNdo2pSXc46+fudeECRMMbTdv3qzatm2r3N3dlaWlpXJ0dFR16tRRCxYsMCrLn9T+4x8FYOqV8P2mlFLnz59XgBo+fLjZ+FMT0/r16xWg5syZk+Q5WbBgQZLnJOF7+scff1Te3t4qf/78Kk+ePKpw4cLK19dXXbx4MVG/8eX7X3Tz5k3VpUsX5eTkpBwcHFTbtm1Nbt+7d+8UxaSUUg8fPlTvvvuuKlCggLKzs1MNGjRQhw4dStRn586dla2trdnS+CmR1Ll6UfwjEX766Sez/cW/JxO+95TKmONXSqktW7aomjVrGn6e3nnnHXXnzp1UnwchRPrRKJXCu5SFEELkOj/88AMff/wxt27dwsPDI6vDyfVGjhzJX3/9xaVLl1I9Ze5V5ebmRq9evZg+fXpWhyKEEAaSZAkhhADi7nVLWDAjMjKSN954A51OR2BgYBZGJuJVr16d999/n/79+2d1KNnCmTNnqFWrFleuXMHFxSWrwxFCCANJsoQQQgDQqlUrihUrRtWqVQkNDcXPz48zZ86wZMkSszf4CyGEECIxKXwhhBACiKsw+Ntvv7FkyRJ0Oh2vvfYaS5cupXv37lkdmhBCCJGjyEiWEEIIIYQQQqQjeU6WEEIIIYQQQqQjSbKEEEIIIYQQIh3JPVnJ0Ov1BAUF4ejomKaHcQohhBBCCCFeDUopnjx5gru7O1qt+fEqSbKSERQURNGiRbM6DCGEEEIIIUQ2cfPmTYoUKWJ2vSRZyXB0dARg/vyb2Nk5ZXE0QgghhBBCiKwSHh5Gv35FDTmCOZJkJSN+iqCdnZMkWUIIIYQQQohkbyOSwhdCCCGEEEIIkY4kyRJCCCGEEEKIdCRJlhBCCCGEEEKkI7knSwghhBBCiGxBodXGotHokCcHZT6lQCkL9Po8wMtdAEmyUmjZMqhYEby9szoSIYQQQgjxqtFqo3FyuoOtbbgkWFlIKYiIsCMsrDB6vVWa+5EkK6XuBOEf7ERgIPj6ZnUwQgghhBDi1aHHxeUqDg4W5MvnTp48VrzsSIpIC0VsbDSPHgVjZXWV+/fLkNa7qyTJSqHuLOM09QkMKoufnwdly8qolhBCCCGEeHkWFtHkyaPHxaUo1tZ2WR1OrmZlZYuFhSWRkdexsIhGp7NJUz9S+CKFWtV7xmT3OfjiB0G38fcHPz8ICMjqyIQQQgghRE4WPz1Qo0mfj+YaDWi1yLTDNIq/Di9z/mQkK6W8vKBePXwCAsDfjwC8CQwqi3+QByCjWkIIIYQQIutoNGBpCdYWMVhYWxqW66JiiNJZEhMTd7+RyBySZKWWtzc+3uDjN4f1QW8SgDf+/o0IDESmEAohhBBCiEyXJw/Y28TG/WPVali5Eh49gnz50Hbpgm3nzthawbPIPMTGZm2suYVMF0wrX198Gj5lsvscGrLDaAqhEEIIIYQQmSFPHrC308PmzWiKFEHTo0dckrVtG6xciaZHDzRFisDmzdjb6cmTRUMs+fJp2LDh76zZeRaQJOtleHuDr6/hXq34ZEvu1RJCCCGEEBlNo3k+grVxI5p27eDePdMN792LW79xI/Y2sel+r9a9e3cZOfJDqlYthZubNRUrFqVHDx927tyWvjtKI6UUU6d+TvnyhSlc2JYOHZpy+fLFDN2nJFnpIcGolhTGEEIIIYQQmcHy+a1Xmn79QKdLurFOh+bdd422Sw83blyjUSMvdu/ezhdfTGfv3lOsXLmRevUaMWLEkPTb0Uv48cdv+PXXn5gxYw5bthzEzs6ezp1bEBkZmWH7lCQrvTwf1fJp+NRoVMvfXxItIYQQQgiR/qwtYmDVKvMjWC+6exdWr47bLp188slgNBoNW7cG0K5dZ0qXLkuFChUZMmQ4W7YcMLvdhAmjqFatLO7udlStWoopU8YTE/NfXKdOncDHpxFFizpSrJgTDRt6cezYYQBu3LhOjx4+lCiRDw8Pe2rVqsjmzf+a3I9SijlzfuDTT8fRunV7Xn+9MrNn/8Hdu0EZOn1RCl+kNymMIYQQQggh0kHevMm1sIy7/yoVNCtXYtGtG3mtTa9//DjlfT169JBt2zYybtwU7O3tE613ds5rdltHR0dmzlxI4cLunDlzimHD3sfBwZGhQ0cC0L//21Su/AbffTcbCwsLTp06Tp48cUNwI0YMISYmmg0bdmFvb8/582ext3cwuZ/r169y795dGjZsmiAuZ7y8anDo0H46d+6R8gNOBUmyMoqvLz4BAfgEzmF8EIZy74GB4Oub1cEJIYQQQohXwqNHGds+CVeuXEIpRdmy5VO97aefjjP8f7FiJbh06VNWr15qSLJu377BRx+NMPTt6VnG0P7WrRu0a9eZihUrAVCiRCmz+7l37y4Arq5uRssLFnTj/v27qY47pSTJykje3uDtzeQEo1qBQWXx8/OQUS0hhBBCCJGkpEaVNBpwdgby5Utdp8/bh4a+/HOz1Et0sHr1Mn799SeuXbvMs2dPiY2NxdHRybB+8ODhfPTReyxbtpgGDZrSoUNXSpb0BGDAgI/45JNBbN++mYYNm+Lj05nXX6/8cgeTzuSerMwghTGEEEIIIUQ6UiruQcOqS5fUbdelS9x26fBgYk/PMmg0GgIDz6dqu4CA/fTv/zbNmrVm6dJ/2LnzGJ98Mpbo6GhDm9GjJ7J//xmaN2/D7t3bqVnzNf75Zw0AvXq9x7FjV+je/R3Onj1F48bVmDv3Z5P7cnMrBEBwsPF9a/fv36NgwUKpijs1JMnKLFIYQwghhBBCpKMonSV07gxubsk3BihUCDp1itsuHeTLl5/GjVvw++8zefbsWaL1oaGPTW4XELCPokWL8+mnY3njjWp4epbh5s3ridqVLl2WwYM/ZvXqzbRt24klSxYY1hUpUpR+/QayePFqhgz5hEWL5pncV/HiJXFzK2RUTj4sLIwjRw5SvXqtVB5xykmSldm8vfEZ+ZrRs7VkVEsIIYQQQqRWfDE+NX8+WFgk3djCAvX770bbpYdvv52JTqejaVNv1q1bxeXLF7lw4Ry//voTzZubTmJKlSrDrVs3WLVqKVevXubXX38yjFIBREREMGLEB+zZ48+NG9c5cGAvx44domzZCgCMGTOMbds2cf36VU6cOMqePTsoV66CyX1pNBoGDhzGt99+yb//ruPMmVMMGtSLQoXcadOmQ/qdiBfIPVlZRQpjCCGEEEKIl6AUPIvMg33Llqh16+Keg3XXRDGHQoXiEqyWLXkWrk2XqYLxSpQohb//Ub77bgrjxn3CvXt3cHFxpUoVL777brbJbVq3bsegQR8zcuQHREdH0axZG0aMGM9XX00EwMLCgocPQxg4sBfBwfcoUMCFtm07MWbMJAB0Oh0jRgwhKOgWjo5ONGnSkqlTvzcb49ChIwkPf8bHH/cnNPQxNWvWZeXKjdjY2KTfiXiBRr3MHWu5QFhYGM7OzoQuXYqTnV3G7MTP77/CGJQFdymMIYQQQgiRW+TJE0nBglcpWrQkVlap/+CfJw/Y28TG/WP1ajQrV8ZVEcyXL+6erU6dgLiELDY2PSN/NUVHR3Lz5lXu3y9JbKzx9QgPD6NHD2dCQ0NxcnIy04OMZGUPCUa11ge9iV+Qr2FUq2xZ05tIAiaEEEIIIQBiYyHsWR4sLcG6fUcsunUzrNNHxRAVnYcENSVEJpAkK7t4Xu7dJyAA/P0M5d4DgxI3DcLDsIkQQgghMp5SimvXThIW9gBX12K4u5dJfqNsTKfTcfnyESIinuLhURYXlyJp6uf27UAePLiJk5MrJUpUQqPRpHOkIqWUguhoiMYSTWRciXelQKn0KXIhUidHJVm7du1i+vTpHDlyhDt37rBmzRo6dOiQ5Db+/v4MHz6cM2fOULRoUcaNG0efPn0yJd408fbGxxt8/OaYXB0/rdB/VWUCAwvItEIhhBAigx069A8LFozh1q3ThmXlytWlf/8ZlClTPQsjS5tNm+bx119f8vDhjedLNHh5tWHAgB8pVMj8Q10TOn/+AL/99gmBgfsMy4oWrUy/fl/h5dUqA6IWqRGXXGV1FLlbjqou+OzZM6pUqcLMmTNT1P7q1au0adOGRo0acfz4cYYNG8Z7773Hpk2bMjjSdODra/IV/7ythCXg/fyyOlghhBDi1bRnzwomT27H7dvuwCbgMrCCixfDGT26IYGBOas08MqVXzFzZn8ePqwH7AEuAfM4duwMn35ah+DgG8n0AOfP7+ezzxpx6VI0sJK4c/I/bt1y5Ysv2nLgwN8ZeQhC5Ag5tvCFRqNJdiRr1KhRbNiwgdOn//vmqUePHjx+/JiNGzemaD+ZUvgiLQICWO/vIMUyhBBCiAwSGxtDnz7FCAurAyzH+LvpCLTaepQpY8v06buzKMLUefToLn37FkOvHw589cLa+2i1b9C4cUs++uj3JPv5+OMaXLkCSu0EEhYF0AGdyJfvKPPnX8XCIkdNmMpSL1v4QqSv9Ch8kaNGslJr//79NG3a1GhZixYt2L9/fxZFlI68vQ2jWr74wamT8rwtIYQQIh0dOfI/wsLuAhNJ/JHJFr1+NBcu7OHWrQuZH1wa+Pv7oVQeYLSJtQXR64fg7/8nUVHhZvu4fv00ly8HoNRnGCdYABbABB49usXx41vSL3AhcqBXOsm6e/cubi88AdvNzY2wsDAiIiJMbhMVFUVYWJjRK9vy9jZMIVxWaYrRFEJJtIQQQoiXExx8HY3GGnjdTItqhnY5wf3719FqSwN5zbSoRmxsJKGhwWb7+G86YTUzLd4ANNy/nzPOyatKowGtNu6/Imu80klWWkybNg1nZ2fDq2jRolkdUvKeJ1vxo1oN2YH/qhAZ1RJCCCFegpOTK0pFAebuU7pkaJcTODm5oNRNINJMi0toNFocHPIl2Ueci2ZaXAVUgnYis2g0YGUFtrbg7AxOTnH/tbWNWy4JV+Z6pZOsQoUKce/ePaNl9+7dw8nJCVtbW5PbjBkzhtDQUMPr5s2bmRFq+pDCGEIIIUS6qV69LdbWjsB3Jtbq0Wi+w939NUqVqprJkaVNgwZvodc/BkzdcxWBVvsL1au3w87O/H0mpUtXw82tDHHnxNRt/d9ia5uXatVap0vMImXy5AF7+7hk6u+/oWtXaNo07r9//x233N4+rp3IHK90klWrVi22bdtmtGzLli3UqlXL7DbW1tY4OTkZvXKU+FGtzicMo1oE3ZZRLSGEECKVbG0d6NlzPPATMAyI/+L1LNADpTbSp8/UHPNsKHf3MjRr9h4azTBgKhBCXKK0H42mFRYW1+jZ8/Mk+9BqtfTtOw34B3gLOP98zQ3gA2A2b701AWvrbFQs7BWXJw/Y2cHmzVCkCPToAStXwrZtcf/t0SNu+ebNce2yKtHKl0/Dhg1/Z83Os0COSrKePn3K8ePHOX78OBBXov348ePcuBE3jD9mzBh69eplaD9w4ECuXLnCyJEjOX/+PLNmzWL58uV8/PHHWRF+5pLCGEIIIcRL69jxU/r0+QZr6/lAMTQaW6Aijo67+PTTv6hZs31Wh5gqgwfPpm3bIVhYTAJcnx9PbVxcbjFp0kY8Pd9Ito/atTszfLgfDg7bgArP+yiOtfVi3n13Bu3aDc3goxDxNBqwsYGNG6FdO3hhApfBvXtx6zdujGuf3t8L3Lt3l5EjP6Rq1VK4uVlTsWJRevTwYefObclvnAnWr19Np07NKVWqAPnyaTh16niG7zNHlXD39/enUaNGiZb37t2bhQsX0qdPH65du4a/v7/RNh9//DFnz56lSJEijB8/PlUPI862JdxTIyAAAgMZHzSQQMoShAcNG0q5dyGEECKlwsOfcOjQekJDgylYsDheXq2xtLTK6rDSLDQ0mEOH/iEi4glFilSgSpUmaLWp++49JiaKw4f/JTj4Bs7OBalRox02NvYZFPGrLa0l3K2s4l5FiphPsBIqVAhu3oTo6LhXerhx4xotW9bB2TkvY8Z8wWuvVSImJobt2zexaNFcAgLiRjvz5dPg57eGNm06pM+OU2Hp0sXcuHGVQoXcGTr0fXbtOkalSlXNtk+PEu45KsnKCq9EkhXPz4/1QW8SgDf+IZVxr1RAnq0lhBBCCJHF0ppk2drG3XPVo0fK97VsGbRvD2YKbada166tOXv2JAEBF7C3N06yQ0Mf4+ycF0icZE2YMIoNG9YQFHSLggUL0bXr24wc+TmWlpYAnDp1gs8+G8bx44fRaDSUKlWG77//lTfeqMaNG9cZOfIDDhzYQ0xMNMWKlWDSpOk0b570vYA3blyjSpWSmZJkye1vuYmvLz4BAfgEzmE9b+IX5It/kAeBgeDrm9XBCSGEEEKIhPLmTb7NypWp63PlSujWDaytTa9//DjlfT169JBt2zYybtyURAkWYEiwTHF0dGTmzIUULuzOmTOnGDbsfRwcHBk6dCQA/fu/TeXKb/Ddd7OxsLDg1Knj5MkTl4CNGDGEmJhoNmzYhb29PefPn8Xe3iHlgWcCSbJyG2/vuPu1AgLA348AvAkMKoufn4eMagkhhBBC5DCPHmVs+6RcuXIJpRRly5ZP9baffjrO8P/FipXg0qVPWb16qSHJun37Bh99NMLQt6dnGUP7W7du0K5dZypWrARAiRKlXuYwMoQkWbmVtzc+PB/VCnoTv1Ot8A+qTGAgkmwJIYQQQmQDSY0qaTRxz8HKZ/6xZibFtw8NhZe9aehl7jpavXoZv/76E9euXebZs6fExsbi6Pjf9LvBg4fz0UfvsWzZYho0aEqHDl0pWdITgAEDPuKTTwaxfftmGjZsio9PZ15/vfLLHUw6y1HVBUU6e17u3afhU5ZVmmL0bC2pQCiEEEIIkX0pBVFR0KVL6rbr0iVuu/SoyuDpWQaNRkNg4PnkGycQELCf/v3fplmz1ixd+g87dx7jk0/GEp2gGsfo0RPZv/8MzZu3Yffu7dSs+Rr//LMGgF693uPYsSt07/4OZ8+eonHjasyd+/PLH1A6kiRL/Pdsrefl3huyA/9VIVLuXQghhBAiG9PpoHNncHNLWftChaBTp7jt0kO+fPlp3LgFv/8+k2fPniVaHxr62OR2AQH7KFq0OJ9+OpY33qiGp2cZbt68nqhd6dJlGTz4Y1av3kzbtp1YsmSBYV2RIkXp128gixevZsiQT1i0aF76HFQ6kSRL/Of5qNZk9zmMLPCbYVTLzy+rAxNCCCGEEC+KiYn77/z5YGGRdFsLC/j9d+Pt0sO3385Ep9PRtKk369at4vLli1y4cI5ff/2J5s1rmdymVKky3Lp1g1WrlnL16mV+/fUnwygVQEREBCNGfMCePf7cuHGdAwf2cuzYIcqWrQDAmDHD2LZtE9evX+XEiaPs2bODcuUqmI3x0aOHnDp1nPPnzwJw8eIFTp06zr17d9PvRLxAkixhLMEUwvhRLYJuy6iWEEIIIUQ2oxRERkLLlrBuXdxIlSmFCsWtb9kyrn16PsCpRIlS+PsfpW7dRowb9wm1a79Op07N2LlzG999N9vkNq1bt2PQoI8ZOfID6tevysGD+xgxYrxhvYWFBQ8fhjBwYC+qVy9Lv37daNq0FWPGTAJAp9MxYsQQatSoQJcuLfH0LMu3384yG+P//reO+vXfoHv3NgC8+24P6td/gwUL5qTfiXiBPCcrGa/Uc7JS6/lDjNcHvYlfSCuCClTG3V0KYwghhBBCpKe0Pifrv+3B5vlmq1fHlWl/9CiuyEWXLnFTBCEuwYqNTcfAX1HynCyRsRKUe/cJnML4oIEEBpXFP8jDsFoIIYQQQmSt2Fh49gwsLeMeNNyt23/roqIgOjruJTKPJFkiec+Trcl+ceXeA/DGf1VlAgMLyKiWEEIIIUQ2oNR/iVRkZFyJd6XSd2qgSDm5J0uknBTGEEIIIYTI9pQCvV4SrKwkSZZIHSmMIYQQQgghRJIkyRJp4+1tGNXyxQ9OnTSMakmyJYQQQgiRcvEjTlKPLnuIvw4vczkkyRJpl2BUa1mlKYZRLX9/SbSEEEIIIVJKr7dEr4fo6PCsDkUQdx30+rjrklZS+EK8PCmMIYQQQgiRZkpZ8PRpXh48uA+AlZUdGo0mi6PKfZRSREeH8+DBfZ4+zYtSyTzhOQmSZIn04+v7vNz7HNbzJn5BvvgHeRAYCL6+WR2cEEJkb7dunWfTpnncunUeW1sHatfuTM2aHcmTJ+3fpAp4/Pg+CxaM4PjxLej1OooUKU/fvt9Stmz1rA5NCCNPn8Y9STg29j5amWuWZfR6ePo0r+F6pJU8jDgZufphxC8jIID1/g4E4E0gZcHdQ0a1hBDCjGXLvmTJkvFotS7o9XXQau+g1wdQtGglvvhiIwUKuGd1iDnS/v1r+OqrHigVA9QFnIDtQCQtWvRnyJA5WRugECZoNDq02hhkICvzxVVltExyBCulDyOWJCsZkmS9hIAACAxkfdCb+IW0IqhAZdzdkWRLCCES2LnzL7777i3gc+AzwPr5miNote0pUcKd778/KFOHUunx4/v07l0UpcoAawHP52vCgKHAIoYMmUOLFv2zLEYhRM6T0iRLBiNFxpHCGEIIkSSlFCtXfoNG0wqYxH8JFoAXev1Crlw5xOnTO7MowpxrwYIRz0ewEiZYEDea9RtQmr/+mpwlsQkhXn2SZImM9zzZii/33pAd+K8KkXLvQohc7/Hje1y/fhyl+php0QQLCw8OH/43M8N6JZw4sRWog3GCFc8C6MvDh0GZG5QQIteQJEtknuejWpPd5zCywG+GUS0/v6wOTAghskZsbPTz/3M000IDOCRoJ1JKp9MRN2pljgMgd0wIITKGJFkicyWYQhg/qkXQbRnVEkLkSvnzu+PkVAhYb6bFBXS6C5QuXS0zw3olFClSHthB3D1YpqzF2jqpJEwIIdJOkiyRNby9DaNavvjBqZOGUS1JtoQQuYWFRR5atx6ARjMf8H9hbTgazRAcHQtSp06XLIguZ3v33W+BSOBDQPfCWj9gG40bv5XpcQkhcgdJskTWkcIYQghB165jeP31emg0TYEuwExgHFptWSwtDzB69DKsrGyyOMqcp3TparRqNRBYDJQDpgA/AU2AdyhUqAwDBvySlSEKIV5hUsI9GVLCPRP5+bE+6E0C8MY/pDLulQpIuXchRK4QExPN5s3z2LDhV4KCzmFt7UC9el3o0OGT59PeRFpt2fI7f/45iZCQIECPtbUTjRu/xYABv6CVJ74KIVJJnpOVTiTJymQJn62FL0F44O4Ovr5ZHZgQQgghhMjt5DlZImeSwhhCCCGEECKHkyRLZE9SGEMIIYQQQuRQebI6ACHM8vaOS7YCAvAJnML4oIEEBpXFP8gjyU2EEEIIIYTISpJkiezvebI12W+OoTBGoH9ZcE+cbAUGIsUyhBBCCCFElpIkS+Qcvr7PR7Xiki1InGT5BTXCP8hDki0hhBBCCJFlJMkSOUuCKYRwIfH6oNtxI10JphVKoiWEEEIIITKTJFkiZzKTOfl4g0+CaYX+/o1kVEsIIYQQQmQqqS4oXj3PS8BPdp9jKAEfX5lQCCGEEEKIjCZJlng1PX/eVnwJeHnelhBCCCGEyCySZIlXW4JRLV/8jEa1JNkSQgghhBAZQe7JEq++hMUy/P2kMIYQQgghhMhQkmSJ3MPbWwpjCCGEEEKIDCfTBUXuI4UxhBBCCCFEBpIkS+ROUhhDCCGEEEJkEEmyRO4mhTGEEEIIIUQ6k3uyhJDCGEKIbCIi4ikhIbewsXHAxaVImvrQ6XTcu3cVULi5lcTCIm1/6kNCbhMR8YQCBYpga+uQpj6ePn3Eo0d3cXQsQN68BdPUR3by+PF9njwJIV++wjg45M2yOHS62OfXWPP8GltkWSyv2jUWGSM6OpL7969jaWlNwYLF0Wg0WR1ShpMkS4h4UhhDCJFFQkOD8fMbx/btfsTEhANQunQNevYcT/XqbVLUh06nY+3aGaxd+zOPHt0EIF++IrRr9yEdOnyS4g/ihw//y59/TubSpQMAWFra0ajR2/j6fpniD9FBQRdZvHgc+/evRq+PBaBKlRb4+k6iXLkaKeojO7lw4SB+fp9z4sRmALTaPNSu3Rlf3y9xdy+daXHodLH8/fd3rF37M48f3wYgf/5itG//Ie3afZypydbt24H88cdYDhxYg1I6AKpWbck770ymTJlqmRaHyN4iIp7y118T2bTpdyIiHgNQpMjrdOs2moYN387a4DKYRimlsjqI7CwsLAxnZ2dCly7Fyc4uq8MRmSUgAAIDGR80kEDKEoQH7u7g65vVgQkhXjVhYQ/45JPaBAc/RK//CGgI3EWjmY1S/nz00XyaNu2bZB9KKb777h127foL6AN0f75mORrNQurU6cqnny5Bq036LoHt2//ghx/6oNHUR6lBgDvgj1b7Ey4uefn2273JJlq3bp1nxIi6REQ4otcPA94ELqLV/oRGc55Jk/5H5cqNkj0v2cWJE9uZOLE1SpVHrx8KlAaOotX+gK3tE6ZP30ORIuUzPA69Xs+3377N3r0rUKov0A1QwDJgIQ0avMXw4X9kygjBjRtnGTmyHpGRzs+v8RtAIFrtj2i1F/nii028/nr9DI9DZG+Rkc/47LMmXLlyBr1+MNAKCEWjmY9S6/D1nUK3bp9ldZipFh4eRo8ezoSGhuLk5GS2nSRZyZAkK5fz8zOMagVSFtw9ZFRLCJGu5sz5gI0b/0KvDwA8E6xRwHtYWi5l0aLbSU5PO3RoA5MntwX+Anq8sHYF0I2xY9dSo0Y7s308exZK794eREd3AeZjfNv2FbRab5o378rgwbOTPJ5x45pz+vQN9Pr9QL4Ea6LQaFrh4nKdefMuJpvwZQc6nY733y9DSEhJlPoXsE6w9iFabS0qVSrB5MmbMjyWAwfWMnVqB+KuZ5cX1v4FvMXnn2+gWrXWGR7LmDGNOXfuLnr9PiBvgjWRaDQtKFjwDr/+ej5HXGORcVasmIaf3ySU2gt4vbB2PDCFX3+9SOHCnia2zr5SmmTJu1+IpEhhDCFEBoqOjmTbtj+ef8v74gcNDTCF2Nhodu5ckmQ/GzfORautRuIEC6ArWq03GzfOS7KPnTv/JCYmCphK4o8HpdDrh7B9ux9RUeFm+7h79yonT25Brx+HcYIFYI1SUwkOvsKJE9uSjCW7OHlyGw8eXEWpaRgnWAD50evHcuLEZu7du5bhsfzvf3PRamuQOMEC6IFW+yb/+9/cDI8jKOgiZ87sQK8fj3GCBWCDUlO4d+8ip0/vzPBYRPb2779zUeotEidYAGPQavOyZcvvmR1WppEkS4jkPC/37tPwqVG5d39/SbSEEC/n0aO7REU9AeqZaVEIC4tyBAUFJtnPjRsX0OvN9QF6fX1u3ky6j6CgQLTa0sRNETSlPtHRT3n06K7ZPu7cufj8/8zFUgONxjLZ48kubt8ORKOxAqqbaRE3JS4o6KKZ9enn1q3AJK6xBr2+PrduZfx5/e9YzcVSB9DkmGssMkZsbAwhIdcw/z6xQ6nqr/T7RJIsIVLK2xufka8ZPVtLRrWEEC/Dzi5+qsltMy1i0OvvYmtrfkoKgIODcxJ9ANzC3j7pPuzsnFHqPhBttg8AW1vHJPuIYy6W+ygVk+C4szc7OyeUigaCzbS4ZWiX0eztk7/GmRFH8tf4DqCSfc+KV5uFRR4sLW0x/z5RaLW3Xun3iSRZQqRWgimECUe1/PyyOjAhRE7j6JifSpWaoNXOAmJNtFiGXh9C3brdkuynfv1uaDR/AzdNrL2FRrOGBg2S7qNOnS7o9Q+Ju7/nRTq02llUrNgIZ2dXs32ULl2NAgWKAz+baTETS0tbqldvm2Qs2UX16m3Jk8cGmGmmxS+4uJSkdOmMr6bXoEFXNJrVmP7QegONZm2y1zg9lCtXg3z5imD+Gv+CpaVdptwbJrIvjUZD3bpd0Wp/A0xNMfZHpzub7O+2nEySLCHS4vkUwoSjWgTdllEtIUSq9ew5HqWOAT2Bq8+XRgEL0WoHULNmZ0qUqJRkH82a9SNvXje02mbAbuKKZihgD1ptc/LmdaVZs3eT7KN48depVasrWu1g4gpfRD1fcxV4C6UO07Pn+CT7sLCw4O23JwBLgWHA/edrwoCvgSm0bz8MB4cX79fKnhwd89O+/VDgS+Ab4MnzNfeBocAy3n7780wpnd6s2Xs4O7ug1TYH9vLfNd6FVtucfPkK07RpvwyPw8IiD2+99TmwBBjOf6N8YcTdz/cVnTp98nzkTeRmnTuPxMIiGI3GBzjzfGkssBqtthtlytTijTeaZ2GEGUuqCyZDqguKZD0v974+6E388DWUe5cqhEKIlNq3bxU//vgeERGhWFiURKkQ9PpQatfuxscfL8DaOvm/P0FBF5k8uSO3b5/BwqIwoEGnC8Ld/TXGj1+Dh0fZZPuIiorghx/6snfvMrRaJzQaF3S6q9jYODF06G/UqWOq6EJia9d+z6JFn6HT6bCwKIZefwelIvHxGUrfvtOz9OG5qaXT6Zg//1P++ecnNBobtNrC6HQ3sLCwoHfvabRvPyzTYrl16wJfftmRoKBzWFi4Awqd7g5FirzOuHGrcXcvk2mxrFnzHYsXj0WnU1hYFEWnCwKi6dDhY3r3/loqCwoATp/eyVdf9SAs7C4WFiVQ6gl6fQiVKjVl1KilODkVyOoQU01KuKcTSbJEigUEsN7fwVDuPQgPGjaUREsIkTKRkc/Yu3cFt26dx8bGgdq1O1O0aIVU9aHX6zlxYhtnzsRVdqtYsT5VqjRN9QfeW7fOs2/fKiIinlCkSHnq1OmKjY19qvp48uQhu3b9RXDwDZydXalXrwcuLkVS1Ud2Ehx8kz17lhEaGoyrazHq1++Jo2P+TI8j7hpv5fTpnWg0Gl5/vSGVKzfOkqQmLCyEXbv+4sGDmzg7F6R+/R4UKOCR6XGI7C0mJpqDB//m8uVjWFnZUL16W0qXNlVxMGeQJCudSJIlUi3Bs7X8aSSjWkIIIYQQr4hX9jlZM2fOpESJEtjY2FCjRg0CkrkB5ocffqBcuXLY2tpStGhRPv74YyIjIzMpWpErSWEMIYQQQohcLUclWcuWLWP48OFMmDCBo0ePUqVKFVq0aMH9+/dNtv/zzz8ZPXo0EyZM4Ny5c/z+++8sW7aMzz77LJMjF7mOFMYQQgghhMi1ctR0wRo1alC9enV++eUXIG5ectGiRfnwww8ZPXp0ovYffPAB586dY9u2/54s/8knn3Dw4EH27NmTon3KdEHx0qQwhhBCCCHEK+GVmy4YHR3NkSNHaNq0qWGZVquladOm7N+/3+Q2tWvX5siRI4YphVeuXOHff/+ldWvzz26IiooiLCzM6CXES3k+quXT8KnRqJa/v4xqCSGEEEK8ivJkdQAp9eDBA3Q6HW5ubkbL3dzcOH/+vMlt3nrrLR48eEDdunVRShEbG8vAgQOTnC44bdo0Jk2alK6xCwGAtzc+3uDjN+e/whj+jQgMlFEtIYQQQohXSY4ZyUoLf39/pk6dyqxZszh69CirV69mw4YNTJ482ew2Y8aMITQ01PC6efNmJkYscgUpjCGEEEII8UrLMSNZLi4uWFhYcO/ePaPl9+7do1ChQia3GT9+PO+88w7vvfceAJUqVeLZs2f079+fsWPHmnymhLW1NdbW1ul/AEIk5O0N3t5MTjCqFRhUFj8/DxnVEkIIIYTI4XLMSJaVlRVeXl5GRSz0ej3btm2jVq1aJrcJDw9PlEjFP2U+B9X7EK+yBKNavvgZjWrJ/VpCCCGEEDlTjhnJAhg+fDi9e/emWrVqeHt788MPP/Ds2TP69u0LQK9evfDw8GDatGkA+Pj4MGPGDN544w1q1KjBpUuXGD9+PD4+PoZkS4gs93xUyycgAPz9DKNa/kEehtVCCCGEECLnyFFJVvfu3QkODubzzz/n7t27VK1alY0bNxqKYdy4ccNo5GrcuHFoNBrGjRvH7du3cXV1xcfHhylTpmTVIQhhnhTGEEIIIYR4JeSo52RlBXlOlsgSz5+tNf5UVwIL1DI8W8vXN6sDE0IIIYTIvV6552QJkas8f7bW5EorjJ6tJfdqCSGEEEJkf5JkCZGdSWEMIYQQQogcJ0fdkyVEriSFMYQQQgghchRJsoTIKaQwhhBCCCFEjiBJlhA5ja8vPgEB+ATOYfypEAKphX+QB4GBUhhDCCFepNfrOXp0I4cP/0tsbDSlS3vRoMHb2No6ZHosoaHBbN++iNu3L2Br60jt2l0oX74WGo0m02MRrzalFGfP7mHfvlVERT2jaNHXaNSoF05OBbI6tFxDqgsmQ6oLimzNz88wqhVIWXD3kFEtIYR4Ljj4BhMn+nDz5kksLMoAjuh0x7G1dWLkyL/w8mqZabFs3DiXuXM/QqfToNVWAu6g092icuVmjBmzAnt750yLRbzanjx5yJdfduLcuZ1YWBQDCqLXn8TCQsuQIXNo0qR3VoeYo6W0uqAkWcmQJEtke8/Lva8PehM/fA3l3k2RBEwIkVvExETxwQdVuXcvEr1+CVAL0AA30GgGY2GxjRkzAihRolKGxxIQsJ4vv2wHDAS+BAoAemA9Wm1vqlSpw6RJGzI8DvHqU0rx2WdNOHfuJHr9H0BL4urcBQOjgQVMmrSJN95olqVx5mRSwl2I3OJ5uXefhk8N5d7LEpjoFV+ZUKoSCiFyg337VnPnznn0+r+B2sQlWADFUGoVer0bf/89I1NiWbp0KhpNQ2AWcQkWxH0Ea49eP5djx/7l8uVjmRKLeLWdP7+fM2d2oNcvBFrz30d9V2AeWm1Nli+flmXx5SZyT5YQr4oEhTFMWc/zYhmrKhMYWEBGtYQQr7SDB/9Go6mJUlVMrLVGr+/D3r3fM2zYggyN49Gju1y6dAD4i/8SvYQ6odW6cODAGjw938jQWMSr78CBv7GwcEena21irRa9/n3OnOnH06ePcHDIl+nx5SaSZAnxqjFT/SK+WMZ63sQvyFeKZQghXmmRkc9QyjWJFgWJiQnPlDjimIslDxpNfqKiMj4W8eqLinoGuGB+slrB5+0iJMnKYDJdUIjcwsS0QoJuy4ONhRCvpGLFKqLV7gEiTK7XaLZQpEjFDI+jQAEPbGycga1mWlxFp7tIsWIZH4t49RUrVhGd7gwQZKbFFuztXXB2TuoLCJEeJMkSIrfx9san4VMmu8/BFz84dRJ/fyTZEkK8Ulq06I9e/xiYALxY42szSq2jTZuBGR6HlZUNzZv3RaudDZx5YW0MGs2n2No6U7dutwyPRbz6GjR4GysrG+BTQPfC2uNotb/RsuV75MljmQXR5S6SZAmRGyUY1VpWaYphVEsKYwghXhWFC3vSr9+3wHQ0mkbAQmAV0AeNpi1vvtmKZs3ezZRYevSYgIdHcbTaWsAw4G9gFlptNTSadXz88QJsbOwzJRbxarO3d2bYsPloNMvRar2BOcS93z5Aq61LiRIV6Nr1s6wNMpeQEu7JkBLuIldI8Lwt/5DKuFeSwhhCiFfDwYPrWLlyOhcu7AGgQIEStG07iPbtP87Ub/OfPQtl5cqv2LjxN549ewBo8PJqQ7duY6hQoXamxSFyh9Ond7F8+TSOH98EKBwdC9Kq1ft06jQKOzvHrA4vR5PnZKUTSbJErmHmeVtSGEMI8SoIDw8jNjYaB4f8aLVZN5FHp9Px9OlDbGzssbaWzxUiY0VGPiMqKhwHh/xYWFhkdTivBEmy0okkWSLXCQhgvb8DAXgTSFlw95BRLSGEEEII5GHEQoi0ksIYQgghhBAvRZIsIURiUhhDCCGEECLN5GHEQgjzvL3B25vJfnP+K4yxqjKBgVIYQwghhBDCHBnJEkIk7/mo1mT3OYws8JthVMvPL6sDE0IIIYTIfiTJEkKkTIIphL74GaYQyr1aQgghhBDGJMkSQqSOFMYQQgghhEiSJFlCiNSTwhhCCCGEEGZJ4QshRNpJYQwhhBBCiERkJEsI8fKkMIYQQgghhIEkWUKI9CGFMYQQQgghAEmyhBDpTQpjCCGEECKXkyRLCJH+pDCGEEIIIXIxKXwhhMg4UhhDCCGEELmQjGQJITKeFMYQQgghRC4iSZYQInNIYQwhch29Xs+zZ6HodLFp7kMpRXj4E6KjI18qlujoSMLDn6CUSnMfOl0sz56FotfrXyqW9BAVFU5UVHhWhyEykFzjnE2mCwohMpe3Nz4E4BMYN4XQ71Qr/IMqExiITCEU4hXx6NE9Vq36ii1bFhER8QhLS1vq1+9B165jcHcvk6I+dLpY/v13FuvWzeTevUAAKlVqQufOI3jzzRYpjuXo0U2sWjWdU6e2AeDmVpZ27YbQuvVgLCxS9jHo9u1AVq78il27lhITE4GtbT6aN+9Dp06jyJfPLcWxvCylFP7+fvz9949cvXoEgFKlqtOx4zDq1++JRqPJtFhExlBKsX37H/z9949cv34MAE9Pbzp2/Jh69brLNc5BNOplvtLJBcLCwnB2diZ06VKc7OyyOhwhXi0BARAYyPiggQRSliA8aNhQEi0hcrIHD24xYkRdHj16gl7/HvAmcBGt9lesrZ8ydep2PD3fSLIPnS6WadO6cujQepTqBrQFnqDVLkSvP8DAgTNp3XpwsrFs2DCTX3/9AK22Jnp9H8ARWI9GswJv73aMHr082UTr8uWjjBnTmOhoJ/T6AUBp4Cha7W/ky+fE9Om7cXEpkpJT81KUUvz228esX/8jGk3r5+dFodEsQ6mNdOz4KX37Ts/wOETGUUrx668f8u+/M9Fo2qBUV0CPRrMUpTbTufNoeveeltVh5nrh4WH06OFMaGgoTk5OZttJkpUMSbKEyAR+fv8VxgipjHslKYwhRE41ZUonDh06hF6/DyiaYE0oWm0T3N2jmDnzZJLfyG/cOJdZswYB64A2CdYoYBgazS/MnXsZN7cSZvu4e/cqAwaURqkPge+BhPv7B2jHBx/MpXnz98z2oZRi8OBK3Llji16/DUj4geoGWm0dvL29+eyzVWb7SC8nTmxj/PimwEzgxQTzR2AYU6fu5PXX62d4LCJjHD26iYkTWwJzgAEvrP0O+JSvvtrDa6/VyfzghEFKkyy5J0sIkfWkMIYQr4SQkNsEBKxFrx+HcYIF4Ixe/zW3bp3m7Nk9Sfbzzz+z0Wh8ME6wIC5RmopG48jmzfOS7GPz5nloNI7AVIwTLIC2aDRtWb9+VpJ9nD27h9u3z6DXf4NxggVQDL3+Mw4eXEtISFCS/aSHDRtmo9W+DgwysfYjtNpy/Ptv0scjsre4a1wV6G9i7cdYWJTm339nZ3JUIq0kyRJCZA9mCmN8840UxhAip7hx4yxK6YHmZlo0BvJw/fops30opbh58yRKmevDHr2+Hteume8D4Nq1k+j19QHTs1CUasHNm8n3odFYAg3NtGiBUjpu3jybZD/p4cqVk+j1LUicMAJo0OtbcPly0scjsre4a9wc09dYi07XgitX5BrnFJJkCSGyF29vw6iWL364h5w0jGpJsiVE9mZtbfv8/x6aaREKxGJlZWtmPWg0GiwtbZPoAzSaBwn2ZZqVlS1abUgSLUKe7yfpPpSKfR636T7i22W0uONN+niSOycie4u7fubf95D8+15kH5JkCSGynwSjWssqTTGMavn7S6IlRHZWpow3jo5ugLmpfL+j1Vri5dUqyX5q1myPhcVCINrE2tModYAaNdon2UeNGu2f3xd2xsTaaLTaRdSsmXQfXl6t0GotgPlmWvyGk1MhypbN+BtIa9duj1a7EnhkYu0DtNo11K6d9PGI7C3uGi/HdFJ/H41mrVzjHESSLCFE9vU82Yof1WrIDvxXhciolhDZlKWlFV26jAB+BaYD8c+2igX80GjG0rRpP/LlK5RkPx07fopSN4CewN0Ea46g1XbEza0MtWt3TrKPOnW6ULBgabTaDsDRBGvuoNH0RKO5RceOnyTZR/78hWnatB8azWfAEkD3fE0k8A0wly5dRpAnj2WS/aSHli0HYm1tiVbrA1xJsOYSWm1bbG1tadHC1L08Iqdo3XowVlaa59f4aoI1gWi1bbGzc0iyUIvIXiTJEkJkf1IYQ4gco0OH4XTo8AkwEq3WA622PhYWJYB3qFWrPQMG/JhsH56ebzB69AqsrDah0RRFq62NhUUloBpubnmYPHkTlpbWSfZhZWXDl19uws0tD+CFhUUltNraaDTFsLTczOjRKyhVqmqysQwY8BO1arUDfLGwKI5WWx+t1gMYRceOn9K+/cfJ9pEeChRw54sv/oe9/UWgNFptdSwsqgFlcHC4zhdfbMzUZ3aJ9OfiUoQvvvgfdnbnAU+0Wu/n17gcjo63+fLLTTg7u2Z1mCKFpIR7MqSEuxDZTEAA6/0dCMBbnq0lRDYWFHSRbdsWcv/+dZydXWnY0JfSpb1S1cfTp4/ZseMPLl06jKWlNdWqtaF69bYpfogwxD1z69Chfzh8eAMxMVGULl2NRo164eCQN1WxXLp0BH9/P0JDgylYsDhNmvTF3b10qvpID1FREezZs4xTp/zRaDS8/npD6tbtJvfqvEKiosLZtWspZ87sQqPRULlyY+rU6YqVlU1WhyaQ52SlG0myhMiGnj/EeH3Qm/iFtCKoQGXc3ZFnawkhhBAiQ8lzsoQQry4pjCGEEEKIbCzl4+1CCJHdeHuDtzeT/eawPuhNAvDGf1VlAgMLyKiWEEIIIbKMJFlCiJzP1xefgAB8AuewnjfxC/LFP8iDwMC4KYSmSAImhBBCiIwiSZYQ4tXwfFTLJyAA/P3iCmMElSUQj0RNg4L+20QIIYQQIr1JkiWEeLV4e+PD81GtoDch6IX17h4E4IG/fyPDSJckW0IIIYRIT5JkCSFePfGjWqbWBQTgw3rGnwohkFqGaYW+vpkdpBBCCCFeVVJdUAiRuzyvTDi50gp88TNUJvTzk8qEQgghhEgfkmQJIXKn5yXgJ7vPwRc/Qwl4SbaEEEII8bJkuqAQIvcyUyzDP8jDsFoIIYQQIrUkyRJCCG9vfLzBJ+HztqQwhhBCCCHSSKYLCiFEvARTCBuGrDSaQiiEEEIIkVI5LsmaOXMmJUqUwMbGhho1ahCQzM0Tjx8/ZsiQIRQuXBhra2vKli3Lv//+m0nRCiFyHCmMIYQQQoiXlKOSrGXLljF8+HAmTJjA0aNHqVKlCi1atOD+/fsm20dHR9OsWTOuXbvGypUruXDhAvPmzcPDI/HDSYUQwogUxhBCCCFEGmmUUiqrg0ipGjVqUL16dX755RcA9Ho9RYsW5cMPP2T06NGJ2s+ZM4fp06dz/vx5LC0t07TPsLAwnJ2dCV26FCc7u5eKXwiRQwUEsN7fIa4wBmUJwoOGDeVeLSGEECK3CQ8Po0cPZ0JDQ3FycjLbLseMZEVHR3PkyBGaNm1qWKbVamnatCn79+83uc26deuoVasWQ4YMwc3Njddff52pU6ei0+nM7icqKoqwsDCjlxAil/P2xmfka4ZRrYbskFEtIYQQQpiVY6oLPnjwAJ1Oh5ubm9FyNzc3zp8/b3KbK1eusH37dt5++23+/fdfLl26xODBg4mJiWHChAkmt5k2bRqTJk1K9/iFEK8AX198AgLwCZzD+FMhBFIL/yAPAgPB1zergxNpdfXqSQ4f3kBsbDSenm/i5dUaCwuLVPXx6NE99u5dQVhYMC4uRalTpyv29s6p6iM6OpIDB/7m1q3z2No6ULNmRwoX9kxVH0opzpzZzZkzu1BK8frr9alYsT4ajSZV/QiRGz18eId9+1YSFvYAV9fi1KnTFTs7x6wOK82Cgi5x4MAaIiOfUazYa9So0R5LS+usDivXyDHTBYOCgvDw8GDfvn3UqlXLsHzkyJHs3LmTgwcPJtqmbNmyREZGcvXqVcMfzBkzZjB9+nTu3Lljcj9RUVFERUUZ/h0WFkbRokVluqAQwpifn6HceyBlwd1Dyr3nME+fPuKbb97i+PGNaLVOaDS26HT3KFCgOKNGLaV8+ZrJ9qHX6/nzz89ZufIblNKg1bqi093FysqGvn2/pk2bISmKJSBgPd9/349nzx5gYeGOUo/R6yNo0MCXDz+ci5WVTbJ93L17lalTu3Dt2lG02vyABr0+hOLF32Ds2JUUKlQqRbEIkdvo9XoWLRrN2rXfo5QFWq0LOt0drKzseP/9GbRo8X5Wh5gqUVER/PTTe+ze/SdarT0ajTM6XRCOjgUZPnwhXl6tsjrEHO2Vmy7o4uKChYUF9+7dM1p+7949ChUqZHKbwoULU7ZsWaNvJCtUqMDdu3eJjo42uY21tTVOTk5GLyGESEQKY+RoOp2OiRPbcvLkIWApev0DdLq7wCEePfLg889bEBR0Mdl+li//kuXLp6DXf4ZSd9DpbgHXiY7uxa+/fsC2bYuS7ePs2T1MndqJ8PBawDl0utvo9cHALHbtWsEPP/RNto9nz0IZM6YxN26EApvR64Of97GFmzefMmZMY54+fZxsP0LkRn5+41iz5lv0+gkodff5z/E1oqN7MHNmf3btWprVIabKd9+9w969fwNz0euD0eluA2d4+rQakye35/z5A1kcYe6QY5IsKysrvLy82LZtm2GZXq9n27ZtRiNbCdWpU4dLly6h1+sNywIDAylcuDBWVlYZHrMQ4hX3vNy7T8OnRuXe/f0l0crujh3bRGDgPvT6FUB3IL44UjX0+o1ERzvw99/fJdlHeHgYK1d+A4wAJgL5n6/xAGYCXfHzm5jkfcAAf/01GaiEUquA8s+X2gEDUWoWe/Ys5caNs0n2sXXrAh4+vI1evwVoRtyfdw3QFL1+Cw8fBrF16/wk+xAiNwoLC+Hvv78HxgLjgLzP1xQF5gLtWLx4Ajlk4hdXrhznwIFV6PW/Au8Dts/XvIZSa4DyLFs2JesCzEVyTJIFMHz4cObNm8eiRYs4d+4cgwYN4tmzZ/TtG/ctX69evRgzZoyh/aBBg3j48CFDhw4lMDCQDRs2MHXqVIYMSdn0DSGESBEpjJHj7N69DK22EtDQxFpH9Pq++Psn/e31oUMbiI5+Bgw1sVYDfERIyDUuXjxkto+nTx9x4sRm9PrB/JfoJfQ2Wm1+9uxZlmQsO3cuQ6l2QEkTa4ujVAd27ky6DyFyo0OH1hMbGwV8aGJt3M/xvXuBXLlyPHMDS6M9e5aj1boS9+XRi6zQ6wdx5MgGwsOlsFtGyzGFLwC6d+9OcHAwn3/+OXfv3qVq1aps3LjRUAzjxo0baLX/5Y1FixZl06ZNfPzxx1SuXBkPDw+GDh3KqFGjsuoQhBCvMimMkWM8e/YYvb4YcR+iTClOZGQoer3e6O/Ki33EfVfpbraP/9qZiyPUqG1iVmg0hZPsA+DJk0eA6Vkd8f0/eXIiyT6EyI2ePn2MRmOLUgXNtEj+5zg7efbsMRqNB6a/tIG441FERDzBzk5uiclIOSrJAvjggw/44IMPTK7z9/dPtKxWrVocOCBzT4UQmcTbG7y9meznx/qgy3GFMYLK4ucnhTGyk8KFS6PV+qHXRwOmpo/vxdXV02yCFd8H6IGDgKkiGXuftzNfITBvXjesrOyJjt5D3DS/F91Hrw+kUKH+ZvsAKFKkDMHBe0kwO96IVrsXD4/UVSoUIjdwdy+NUuHAMeANEy3ifo5zSuGYwoVLo9fPB0KAAiZa7MXa2gknJ5dMjiz3yVHTBYUQIseQwhjZWvPm76HX3we+N7H2GBrNUlq3TrqiWOXKjXFxKYlGMx54sZhSGFrtFF57rQHu7mXM9mFtbUvjxu+g1c4Crr+wVgETsLCwoGHDpIdCW7Z8H70+AFhtYu1a9Pr9tGyZsyqkCZEZ3nyzJXnzeqDRjAViXlj7GK12GlWqtKBgQXOjzdlLo0bvoNUqYBJxv0MSuopWO4dmzXpLKfdMIEmWEEJkFCmMkW0VLVqBLl3GAKOBnsAm4AAwDq22ISVLVqJNG9OzJuJZWFjw0Udz0Wh2otXWBpYAh4Bf0WqrY2V1kwEDfko2lp49J5I/vyNabQ3gayAAWItG0wqYQ//+P+DomD/JPqpXb0utWl3QaLoDQ4CdwC7gAzSaLtSo0YkaNdonG4sQuY2FRZ7nP8db0GjqAX8R93M8G622GjY29+nf39SXMdmTs7Mr7703A/gZjaYtsJ643ynT0Gpr4uKSn+7dx2dtkLlEjnlOVlYJCwvD2dlZnpMlhHh5CZ6t5U8j3N2RKYRZSCnFpk3zWLnyG+7fvwyAtbUjzZr1wdf3yxTfr3D27F4WLx7PmTM7ANBotFSr1pbevadSrFjFFPXx8OEdFi0aw65dS9Hp4p7VWKxYFd5663Nq1+6Uoj50ulhWrJjG+vUzefIk7nEnjo5u+PgMpkuXMeTJY+4eDSHE6dM7Wbz4c86d2wXE/Rx7e7end+9pFClSLoujS709e1bw11+TuXnzFAB58tjQoEFPevWaRr58blkcXc6W0udkSZKVDEmyhBDpKiAAAgMZf6orgQVqEYQH7u5SGCMr6fV6goICiYmJonDh0tjY2KepnwcPbhEaGkz+/O5p/hDz9Olj7t+/ho2NA4ULe6LRmCvMYV5MTDRBQYEAuLuXxdJSHlkiREoFB98kLOwBBQp4kDevuWIYOYNSijt3LhMZ+RQ3t5LY2ztndUivBEmy0okkWUKIDBEQwHp/h7jCGJQFdymMIYQQQmR3KU2y5J4sIYTICt7eUhhDCCGEeEXluBLuQgjxynhe7t0nIAD8/Qzl3v2DPAyrhRBCCJHzSJIlhBBZzdsbH2/w8ZvzX2EM/0YEBkphDCGEECInkumCQgiRXSR4tlbDkJVGUwiFEEIIkXNIkiWEENnJ82drTa60wujZWnKvlhBCCJFzSJIlhBDZUYJRLSmMIYQQQuQsck+WEEJkV1IYQwghhMiRJMkSQojsTgpjCCGEEDmKTBcUQoicQgpjCCGEEDmCJFlCCJGTxBfG6HxCCmMIIYQQ2ZQkWUIIkRN5e0thDCGEECKbknuyhBAip5LCGEIIIUS2JEmWEELkdFIYQwghhMhWZLqgEEK8KqQwhhBCCJEtSJIlhBCvEimMIYQQQmQ5mS4ohBCvIm9vfAjAJzBuCqFfkC/+QR4yhTADPH58n3/++Zlt2/x48iSYAgWK0rx5X1q1GoSdnWOK+oiMDGfWrIHs2/c30dHhaDQWFCtWjnff/Z6qVZtk8BEYu3v3CuvW/cCuXSuJjHyCh0c5WrXqT9OmfcmTxzJTYxHZV3j4E/73v9ls3ryAkJCbODq60rTpO7Rt+yHOzq5ZHZ4QWU6jlFJZHUR2FhYWhrOzM6FLl+JkZ5fV4QghROoFBLDe3yGuMAZlCcKDhg0l0UoPd+9eYdSohoSGPkKvfxsoCxxDo1lOkSLl+eqrHTg65k+yj/Dwp/TvX5qwsPtAK6AxcBeYD4QycODPtG49KKMPBYDz5/fz+ectiY62Rq/vBbij0fij1D9UrdqC8ePXYmlplSmxiOwrLCyEMWMacetWIEp1A6oCgWi1S8ibNz9ffeVPoUIlszhKITJGeHgYPXo4ExoaipOTk9l2kmQlQ5IsIcQrw8/vv8IYNDLZxN1dRrpSY8SIuly8eA+93h/wSLDmDFptA+rWbcmnnyZ9U9z48c04cWIH8C/QPMGaJ0BrNJoA/vorGDs783/M00NMTDT9+pXkyZNS6PX/AglH4bai0bShZ8+x9OjxeYbGIbK/b799mz17Nj9/31dMsOYWWm1DypQpzPTpu7MoOiEyVkqTLLknSwghcosEhTFG8jUj3f0SvaRYRspdvnyMCxf2otdPxzjBAqiIXj+WPXuW8/jxfbN9REdHcvLkLuBdjBMsiEty5qJUNH/8MTZdYzfl4MG/CQ0NQq+fg3GCBdAUpfrxzz9z0OliMzwWkX09enSPPXuWo9ePwzjBAiiCXv8NFy7s4erVE1kRnhDZhtyTJYQQuUnCZ2txIfH6oNuG5219841MK0zKxYuHAA3Q1kyLDuj1w7l69ThvvPFiAhXn6tUTKBUNtDfTRwWgJOfP733peJMTGBiAhYUnOt2LH5zjdSAsbA4PHtzCza1EhscjsqerV4+j18di/j3rA2gIDAygZMkqmRiZENmLJFlCCJEbmcmcjIplhLTC37+yFMsww8IiD6CASMDBRItwALRa839qLS2tjdomFte/VmuR5jhTKu54Ip/vU2OiRXiCdiK3+u/6m3vPxr2H5H0icjuZLiiEEOI/z0vA+zR8yrJKUwwl4P39pQT8i6pWbYpGowUWm2nxBzY2zpQrV8NsHyVKVCZPHntgoZkWO4E71K3b7aViTYk33miBTncb2G5yvUbzBx4eFSlQ4MWpkSI3KVu2BtbWTsAfZlosRqPRUqVK08wMS4hsR5IsIYQQicU/b8t9juF5W/6rQuR5Wwm4uhajbt3uaLWjgK0J1ijgTzSaGbRtOxgbG3uzfWi1Wpo08QU2AFOBmARrTwPvYGnpQIcOn2TAERirVKkhJUt6odX2A04mWBMDfI1Sf9Oly6doNKZGuURuYWvrQNu2g9FovgP+Iu79zvP/bkGrHU3duj1wdS2adUEKkQ1IkiWEEMK8hMUyCvwmhTFeMGTIr1So4AU0Q6t9E+iJVlseeJs6dbrw9ttfJNvHoEGzqFChLjCWuAIaPYC6QCUsLEKYOnUrWm3G/7nWaDSMH/83hQrZA1XQaOoDPdBqSwCj6dr1Mxo37p3hcYjs7+23v6BOnc7AW2i1FYh733sBzalQoRoffPBrFkcoRNaTEu7JkBLuQgjxnDxvyySdTsfRo/9j+/bFPH4cTMGCRWnWrB8VK9ZP1ajPnj3LWbp0Mg8e3MHKypIaNdrTu/dXODjkzbjgTYiJiWLv3pXs2bOC8PAnFC1ajhYt+lOqVNVMjUNkb0opzpzZxZYt87l//yb58hWkUaN3ePPNllhYZPw9hEJkFXlOVjqRJEsIIRIICIDAQENhjKACleXZWkIIIXINeU6WEEKI9CeFMYQQQohkSX1NIYQQqff8eVuT/eLKvQfgjf+qygQGFpBRLSGEELmejGQJIYRIOymMIYQQQiSSqiQrIiKCPXv2cPbs2UTrIiMj+eMPc89MEEII8cpKMIUwvtw7Qbf55huZQiiEECJ3SnGSFRgYSIUKFahfvz6VKlWiQYMG3Llzx7A+NDSUvn37ZkiQQgghcgBvb8Ooli9+uIecNIxqSbIlhBAiN0lxkjVq1Chef/117t+/z4ULF3B0dKROnTrcuHEjI+MTQgiRk0hhDCGEECLlhS/27dvH1q1bcXFxwcXFhfXr1zN48GDq1avHjh07sLc3/0R7IYQQuYwUxhBCCJGLpXgkKyIigjx5/svJNBoNs2fPxsfHhwYNGhAYGJghAQohhMjBpDCGEEKIXCjFI1nly5fn8OHDVKhQwWj5L7/8AkC7du3SNzIhhBCvhuejWj4BAeDvRwDeBAaV5ZtvPGjYUEa1hBBCvHpSPJLVsWNH/vrrL5PrfvnlF3r27IlSKt0CE0II8Yp5oTBGQ3ZIYQwhhBCvJI2SzChJYWFhODs7E7p0KU52dlkdjhBCvBoCAiAwkPFBAwmkLEHIqJYQQojsLzw8jB49nAkNDcXJyclsuxRPFxRCCCHSjRTGEEII8QpL1cOIhRBCiHQlhTGEEEK8giTJEkIIkbUSPFsr/l4tgm7zzTdyr5YQQoicSaYLCiGEyB68vfEhAJ/ABFMI/RsRGIhMIRRCCJGjSJIlhBAi+0hQ7t0ncA7jgyAwqCz+QR6G1QktXz6NgIB1WFpa0bnzKKpVa53qXV65cpwNG2YSExPFG280p1Ej3/Q4klRTSnHmzG5u3TqPra0DXl6tcHDIlyWxZCf+/ks4enQTlpbWtGo1iNKl30x1HyEhQRw/voXY2GhKl66Gp+cbGRBp8uKu8S5u3bqAra3j82ucN0tiefr0EUeO/I+IiKcUKVKeihXrodFosiSW9BAScpvjx7cSGxtNmTLVKVWqalaHJHK5NFUXXLx4MXPmzOHq1avs37+f4sWL88MPP1CyZEnat2+fEXFmGakuKIQQWcjP779RrZDKuFeKK4zx7JkfP/zwLkpFJ2iswcbGkZ9/Po6bW8lkuw4Le8jIkbUICroI/Pen0NraidGjl+Ll1Sr9j8eM8+f388MP7xIUdA7QAApLS1vatfsIX98pWFhYZFos2cWxY1uYOrUrUVGhCZZqKFSoNN9+uw8nJ5dk+4iKCmf27A/YseMPlNIZlpcpU4tPPlmEu3uZDIjctLNn9/Ljj+9x5855/rvGdnToMIy33voi066xTqfDz28s69b9RExMhCEWd/cKDBs2n/Lla2ZKHOklMvIZs2YNZufOJUbXuGzZ2nzyyR8ULuyZhdGJV1FKqwum+p6s2bNnM3z4cFq3bs3jx4/R6eLe0Hnz5uWHH35Ic8BCCCFEIiYKY6xZs53vv++LUkWANUA08Bj4gcjIaAYOrEB0dHSS3er1egYPfo2goOvAd8BDIAZYR1RUISZNas+lS4cz9tieu3r1JOPGNePu3bzADiAWuENMzKesWjWd334blilxZCeXLh1l4sS2REW5AmuJuzaPgO+5e/cmgwe/jl6vT7IPpRRTp3bB338ZSn33fPsY4G8uX37IqFENePjwTkYfCgCXLx9j/Pjm3LtXANhJ3DUOIibmY1as+Ir58z/JlDgA5s0byurV3xITMwK48zyWHdy9m5dx45py9erJTIvlZen1eqZM6cSuXatQ6nvifg9EA2u4dCmYUaMa8OjR3awNUuRaqU6yfv75Z+bNm8fYsWONvnWpVq0ap06dStfghBBCiBcLY1y/2A2wAfYAHfh/e3ceV1W1/nH8c/ZBJhWcB4icTS01hzA0E9Nyil+Z3dTE1GywzLrZZINTVJplWWlZWXm9WE43S63MUnHKopwyJ3IeEGdBRBnO3r8/QAJlFA6H4ft+vc6r3GvvxbPPQjkPa+1nQTnAF3gSWIDDkcjHHw/PscslSz4gLu4Y8BXwNFCZ1BX0IcAawJtp04Y5644y+fLLcaSk+GOaPwPBpP5orgW8CrzNd99NIyZmX5HEUlx8+OGjWNalMf4/UsemEvAUMJe4uGMsWjQlxz7+/HMFmzb9gGl+lXZdpbR+7sI0Izh37kKufRSWL78ch8NRB9P8CbiV1DGuDbwGTGTJkg84fvyA0+M4enQP33//IZb1NjCe1O8zAwjGNH8iJcWfOXNedXochWXLlp/ZsmUZpjkPGEHqvwPlgLsxzQji4s6xePH7rg1Syqx8J1n79u2jVasr1zJ7eHhw/vz5QglKRETkCoGBhATHE58UBwwm9UPq5XoC17FmzZwcu/rhh4+AeqQmaZerATzEnj3O/43++fOxREYuwjSfALJakv4ohlGRVatmOz2W4mT37i3Ag0DNLFpDgAb88MP0HPuIiAjHMJqknX+5WpjmIH7+eVaBY81NfPwZ/vhjCaY5AvDK4ozHsNm8Wb36K6fHsmrVlxiGD/BIFq3lMc0n+PXXb0hIiHN6LIVh5cr/Yhg3AFkt7fXDNAfy88//LeqwRICrSLLq1avH5s2brzi+dOlSmjZtWhgxiYiIZC0wkNTlTU2yOcEGNCM5OeflgufPnwWapp2fleuAZFJSUq4uzjyKjz+T9hxJdvfjjc0WQGzscafGUZykLgNMJnUMspI6xgkJsdm0pzp79jimeR05jfG5c85/X+PiTmFZJtnfTwVsNv8iGePY2OPYbAFkndADXIdlOYiPP+P0WApD6hg3xtVjLJKVfFcXHDlyJMOHD+fixYtYlkVkZCRfffUVEyZMYMaMGc6IUUREJAM3YGM2bSawAQ+PrGYM/uHjU52zZzcBDiCrggObsNnccXNzbhFeH59q2O0eOBybgNuzOOMsprmXatUGOTWO4sQwDGw2DyxrczZnOICNuRa+qFbtGuz2ZWnPjmc9xpUrBxQs2DyoVKkGhlEO09wM3JbFGacxzQNUq+b8WKpVC8Cy9gKxpC6tu9wm7HaPPBUVKQ5Sx3gVDodJ1vMGm6hSxfnvq0hW8j2T9dBDD/Hmm2/yyiuvkJCQwP33389HH33Ee++9R79+/ZwRYybTpk2jbt26eHp60q5dOyLzuFPlnDlzsNls3H333c4NUEREnKpejcrAbCAqi9bZwEECAh7NsY977rn00P/MLFr3AjNp2rRdwQLNAy+vCtxyy78wjKnAqSzOmIzNlkxwsGvKyrtKs2Y3A/8BdmfR+l/gCL17P5tjH126DMHh2J92/uV2Yxiz6d79wYKGmitvbx86dLgXw3if1AIrl3sLm81Bp04DnB5LcHAolpVIarGXy53CMKZy66198fQs7/RYCkPXrg/icOwBvsyidRc22xy6dRtS1GGJAPlMslJSUpg1axZdu3bl77//Jj4+npiYGA4fPszQoUOdFWO6uXPnMnLkSMaOHcvGjRtp2bIl3bp14/jxnKeC9+/fz7PPPkvHjh2dHqOIiDjXNy+/TOqMVXtgKnAQ2AY8DwymnOHFDVWGM2kSZPd7uNtue4DatRuT+mzKs8Bfaf18CARhGBYjRnzm9HsBGDBgPN7eFzGM9lxKIOAPYCjwGv36jaZKlayePyu9nnrqC+x2G6ljPI1/xvg5YCg1azbgtttynt277rp2BAc/ADyUdt22tH6mYRgdqVEjgDvvHOHM20g3YMCreHnFYxgdSP1FwBHgd1KfLZzI/fePo1KlGk6Po2pVP/r1Gw2Ekfr99UdaLP/FMNrj7Z1I//7jnB5HYWnatD233no/NtsQ4AVgO3AA+ADDuJXatevSs2fORXBEnCXf+2R5e3uzY8cO6tSp46yYstWuXTtuuukmpk6dCqSu2w4ICGDEiBGMGjUqy2scDge33norDz74IGvWrOHs2bN88803ef6a2idLRKT4Wbd9O7ePGceFpET+2ePKzjUVvdnRpQsrT96curcWnfHzg8aNr9zIOCkpibFjb2fbtl9Ifc4LwEblyv6MG/cd9eq1KLL7OXx4Fx999ARbt/6cfszHpzb9+r1Er17DS/QmsVdr//6/GDeuB6dPH+GfMXajWbMgXn31Z9zd3XPtw+FwMGfOeBYt+oALF84CYLPZufnm3jz22LQiSWwuOXx4Z9oYL08/5uvrR//+r9Cjx7AiG2PLsvjuu2nMmfMGcXH/lLBv0eJ2HntsKv7+jYskjsLicKTw5ZdjWbx4Ghcvpj6nZxhuBAXdw7BhU/H1re7iCKW0yes+WflOsoKDg/n3v/9d5MvukpKS8Pb2ZsGCBZm+9qBBgzh79izffvttlteNHTuWP//8k4ULFzJ48OBck6zExEQSExPT/xwXF0dAQICSLBGRYuinTZuYtXIlXu7uvPivf1GvZlo1ushIiIpidPQwomhMNP4EB1+ZaAHExZ1k+fL/kJh4nrZte9KwYdsivYeMjh7dw5Eju/D0rECTJkG4uZVzWSzFxe7dG/njjyW4u3vRteuQq3peKDExgZ0715OSkkTdui2pWtXPCZHmTXT0bqKjo/Dyqsh1193ssjFOSUlm5871XLwYj7//dSV+096LF8+za9evpKQkUa/ejWVu9leKTl6TrHw/0fv444/zzDPPcPjwYdq0aUP58pnX7bZo4Zzf/J08eRKHw0HNmpnLudasWZOdO3dmec3atWv57LPPsqyGmJ0JEyYwfvz4goQqIiJF5PZWrbg9i21FCAyEwEDCwqezOLp16qzW/1oQFVX1ilktH59q9O5ddJvB5qR27QYl/sNuYWvYsDUNG7YuUB8eHt60bNmlkCIqGD+/hvj5NXR1GLi5leOGG251dRiFxtOzfLEZYxG4iiTrUnGLJ598Mv2YzWbDsixsNltaFR/XO3fuHAMHDuTTTz+lWrW8/9brxRdfZOTIkel/vjSTJSIiJVBoKCGRkYRETWcxrQmPDiUi2p+oKAgtW7UkRESkCOU7ydq3zzW7zlerVg273c6xY8cyHT927Bi1atW64vw9e/awf/9+QkL+2YQwde8NcHNzY9euXTRocOVvCz08PPDw8Cjk6EVExGXSZrVCIiMhIpxIAomKbsykSdkvIRQRESmIfCdZrih4AeDu7k6bNm1Yvnx5+jNZpmmyfPlynnjiiSvOb9KkCVu3bs107JVXXuHcuXO89957mp0SESlrAgMJIW1W69ISwojORGVVCZ6si2WIiIjkRb6TrFmzZuXY/sADD1x1MLkZOXIkgwYNom3btgQGBjJlyhTOnz/PkCFD0r+2v78/EyZMwNPTkxtuuCHT9ZUqVQK44riIiJQRGWa1QqKmMzoawP+K06Kiy2tZoYiIXLV8J1lPPfVUpj8nJyeTkJCAu7s73t7eTk2y+vbty4kTJxgzZgwxMTHceOONLF26NL0YxsGDBzGMfO+vLCIiZU2GwhhZWUzr9GWF4eH+mtUSEZF8yXcJ96z8/fffPPbYYzz33HN069atMOIqNrRPlohIGZRWAn5xdGvCCSUa/2z32xIRkbIjryXcC2Xap1GjRkycOPGKWS4REZESKTAwtTJhcDyhhBPMSog+QkREav4lIiKSk3wvF8y2Izc3oqOjC6s7ERER1wsMJCQQQsKvLJahWS0REclOvpOsRYsWZfqzZVkcPXqUqVOn0qFDh0ILTEREpNjIsN/W6K2niCJIhTFERCRb+X4m6/LCEjabjerVq3PbbbcxefJkateuXagBupqeyRIRkUwiI1kcUSG1MAaNwU+FMUREyoq8PpOV75msSxv6ioiIlEmX7bcVHh2aPqulZEtEROAqCl+8+uqrJCQkXHH8woULvPrqq4USlIiISLGmwhgiIpKDfC8XtNvtHD16lBo1amQ6furUKWrUqIHD4SjUAF1NywVFRCRX4eH/FMags8q9i4iUUk4r4W5ZFjab7YrjW7ZsoUqVKvntTkREpORLm9UK85tO8KkF6bNa4eGuDkxERFwhz89kVa5cGZvNhs1mo3HjxpkSLYfDQXx8PMOGDXNKkCIiIsVeYCAEBhIWGcniiD2phTGiGxMersIYIiJlTZ6TrClTpmBZFg8++CDjx4/H19c3vc3d3Z26desSFBTklCBFRKTgdhw6xLTvvuOnzduxLIvbWjZleM+eNK9b19WhlWjnL17kvytXEr58OcfPnuXaGjUY0qABY8r9wdKYtiqMISJSBuU5yRo0aBAA9erVo3379pQrV85pQYmISOH6atUqBr47BRtVSTH7AAb7jn/NJz8u47MRTzCka1dXh1giHT97li4vvcT2w4fpZbNxs2Wx6eRJQv/6ixnXX893dzaAdeHps1oR0f6AEi0RkdIu3yXcO3XqlP7/Fy9eJCkpKVN7Tg+AiYhI0dt1+DAD352CwxwAfAq4A5DieBcYztAPptK6QQNa1qvnyjBLpMHvvsvJ6Gj+BK6/VEfKNFkN9Nyxg2evvZYPn3+MkPDp/xTGiOisWS0RkVIu34UvEhISeOKJJ6hRowbly5encuXKmV4iIlK8fPjDD9ioDHzCpQQrVTngQ+y2Wnyw5DvXBFeC7Tp8mB82beIt0+T6y9puBUaZJjN//pmz8fEqjCEiUsbkO8l67rnnWLFiBR999BEeHh7MmDGD8ePH4+fnx6xZs5wRo4iIFMDyLdtJMe8GPLJodSPFvJflW7YXcVQl35rtqe/Zvdm03wdcSE7mj927Uw+k7a0V1mdLpr21wsO1t5aISGmT7+WCixcvZtasWQQHBzNkyBA6duxIw4YNqVOnDrNnz2bAgAHOiFNERJwoi505xFkCAwkhkpCo1CWEKowhIlL65Hsm6/Tp09SvXx9Iff7q9OnTANxyyy2sXr26cKMTEZEC69KyGXZjIZCYRWsKbvYFdG3ZrKjDKvE6Nkt9z+Zn0z4X8CpXjrYNG17ZmDarFRIcn2lWKyJCs1oiIqVBvpOs+vXrs2/fPgCaNGnCvHnzgNQZrkqVKhVqcCIiUnCP9+gBnAUeJnOilQw8hsOM4YlevVwRWol23TXX0LNVK54zDP66rG0VMNFmY3DXrlSqUCH7TgIDCXm+GWF+09OTrUvPainZEhEpufKdZA0ZMoQtW7YAMGrUKKZNm4anpydPP/00zz33XKEHKCIiBXPdNdcQPvJp7MaXuBkBwGPAcNyMazFsn/P5kyNoocqCV+WLp5+mhr8/LYEQm41ngM6GQTDQrlkz3n7wwbx1pMIYIiKlis2yLtWcvToHDhxgw4YNNGzYkBYtWhRWXMVGXFwcvr6+xM6Zg4+3t6vDERG5ajsPH2bad9+xbNM2LMuiS8umDO/Vixvq1HF1aCVaQmIi4StX8t8MmxE/eMcd3NuhA+Xc8v3oM0RGsjiiQureWjQGP389qyUiUkwkJMTRr58vsbGxOW5dVaAk6+LFi3h6el7t5SWCkiwRESlykZEQFZVaGINQovHHz0+FMUREXC2vSVa+lws6HA7CwsLw9/enQoUK7N27F4DRo0fz2WefXX3EIiIikkqFMURESrR8J1mvv/46M2fOZNKkSbi7/7Op5Q033MCMGTMKNTgREZEyTYUxRERKpHwnWbNmzeKTTz5hwIAB2O329OMtW7Zk586dhRqciIiIoMIYIiIlTL6TrCNHjtAwiz0/TNMkOTm5UIISERGRy6QtIQzrsyXTEkLNaomIFD/5TrKaNWvGmjVrrji+YMECWrVqVShBiYiISDYCA9NntUIJzzSrpWRLRKR4yHdt2TFjxjBo0CCOHDmCaZp8/fXX7Nq1i1mzZrFkyRJnxCgiIiIZBQamJluRkRARnlruPboxEdH+6c0iIuI6V1XCfc2aNbz66qts2bKF+Ph4WrduzZgxY7jjjjucEaNLqYS7iIgUe+HhLI5uTSSBRNBZ5d5FRJyk0PfJ2rt3L/Xq1cNmsxVakCWBkiwRESkR0vbWGr31X0RVDUrfWys01NWBiYiUHoW+T1ajRo04ceJE+p/79u3LsWPHChaliIiIFA4VxhARKTbynGRdPuH1/fffc/78+UIPSERERApAhTFERFwu34UvREREpJhTYQwREZfKc5Jls9mueB6rrD2fJSIiUqIEBhISCCHh0/8pjBHRmagoFcYQEXGmPCdZlmUxePBgPDw8ALh48SLDhg2jfPnymc77+uuvCzdCERERKZjQUEIiIwmJms7oraeIIoiIaH+iolQYQ0TEGfKcZA0aNCjTn0P1r7KIiEjJkbaEMCwyksURe9KXEIaH+2tWS0SkkF3VPllliUq4i4hIqZNW7n1xdGvCCU0v965kS0QkZ3kt4a7CFyIiZciZ+Hgio6KwLIubGjWiag4/IJxt6/79HDhxgmoVKxLYuDGGkeeCt6XW7uhodh05QgUvL9o3aUI5Nyf9mFZhDJeJjv6bI0ei8PKqSJMmQbi5lXN1SCLiBEqyRETKgITERJ79/HNm/vQTF1JSAPCw2wnt3JkpDz9MBS+vIovllx07eGr6dP7Yty/9WIPq1ZkwZAj/uuWWIoujONl1+DCPf/ghK/76K/1YLR8fXurXjyd69XJeoSkVxigyhw7t4MMPh7Nt28r0Yz4+tenf/2V69nxcxcREShklWSIipVyKw0HI+PH8tn07L5sm/QAbsMDh4LUVK9h56BDL33gDj3LO/436+p076fLyy7R0OFgEtAV2A5NPnOC+SZOYlZzMwM6dnR5HcbLn6FFuee45ql64QDjQGTgKfBQXx5OffMLpc+cY27+/c4PIoTBG48ZXnq7kK3+io//muedu4eLFmsCXQCcgmri4D/n44yc4f/4s9933soujFJHCpGeycqFnskSkpJu7Zg393nqLFaR+gM/oVyAI+OKppxjcpYvTY+nw7LMk797NGtPEI8NxCxgI/Fi+PIdnzSqShK+4GDh5MqvWrGGTaVL1srbRwETD4ODnn1O7SpWiCSgyksURFVKXENIY/PyvOCU6GoKDlWzl1Vtv3c+6db9gmpuAype1vohhTOaLLw5RuXJNV4QnIvmQ12eytABeRKSU+2LZMjoaxhUJFsDNQDebjc9//NHpcew6fJhfoqJ44bIEC1Jn1kYDJ8+fZ8nvvzs9luIi/sIF5q1dyxNZJFgAzwLuQHhERNEFFRhISHA8YX7TCSU8y1cwK4mIgPDw1Boakr2EhDjWrVuAaT7JlQkWwPNYlp1Vq2YXdWgi4kRaLigiUsodPnGC20wz2/ZWlsXcEyecH8epUwDcmE37dYCXzcbhkyedHktxcTIujiSHg1bZtPsC9Ww2DhX1e5KxMAa7rmgOYTGjo1GxjDw4e/Y4pplM9t/5lTGMupw6dbgIoxIRZ1OSJSJSytWoXJldR49CNqvDd9ps1KhUyflx+PoCqR/ZG2TRfgC4YFnp55UFVSpWxG6zsdOyuD2L9gTgkCvfk+wyp8BAwjIWy/hfC6KiqqpYRhZ8fKpisxlY1i7gtizOiMeyDuHrW6OoQxMRJ9JyQRGRUm5gly78ZFlsyqJtO7DYsnjg9qw+4heuG+rUoeW11/K2zYYji/a3AB8PD/6vXTunx1Jc+Hh7c1e7dkw1DM5n0T4dOGeaDOjUqahDy11oaPqywuerzoDoI+lLCOUfFSpUpm3bOzGMD0hNmy/3IZZ1gU6d7i/q0ETEiZRkiYiUcv1vvZVWdetyh2HwOakf8y4As4AuhkETf38eKIKKfjabjTcffJBVwF02G3+QWvBiNzAMmAaMDw2lvKen02MpTsb2788RNze62mysAEwgmtRn1J4DhvfqRb1atVwaY7YCA9OTrUvPahF9hEmT9KxWRgMGjMduP4Bh3A5E8M8ovwyM4s47n6R69WtdGaKIFDJVF8yFqguKSGlwKi6Oh95/n28jI8n4j37PVq344umni2S54CWLfvuNER99xMHTp9OPVfbyYlxoKCPuvLNM7hf0686dDJ0yhe3R0enHvMuV46m77iJswADsdrsLo8ujyEiIivpnCSGd8fPTfluX7NjxC++99xDR0TvSj7m7l+fuu//N/fe/qs24RUqIvFYXVJKVCyVZIlKa7Dl6lNXbtmFZFrc0a0Zj/yvLcxcFh8PBz1u2cOD4car5+NCjTRu8PC6vOVi2WJbFuh072HHoEBU8PenRpg2VKlRwdVj5l5ZsjY4eRhSNicZf5d7TWJbFtm1rOHJkF15eFWnTpgfly5edZxBFSgMlWYVESZaIiMhVCA//Z1brVAv8mqswhoiUfNonS0RERFxHhTFEpAxTkiUiIiLOocIYIlJGaZ8sERERca7AQEKIJCQqw95aEZ2JilJhDBEpnZRkiYiIiPMFBqYmW5GpydboaIiKbkxEtH96s4hIaaEkS0RERIpOWrIVFp5hVut/LYiKUmEMESk9StwzWdOmTaNu3bp4enrSrl07InNY1P3pp5/SsWNHKleuTOXKlenatWuO54uIiEgRUWEMESnFSlSSNXfuXEaOHMnYsWPZuHEjLVu2pFu3bhw/fjzL8yMiIujfvz8rV65k/fr1BAQEcMcdd3DkyJEijlxERESuoMIYIlJKlah9stq1a8dNN93E1KlTATBNk4CAAEaMGMGoUaNyvd7hcFC5cmWmTp3KAw88kKevqX2yREREikDaJsbpSwjpjJ+fCmOISPFS6vbJSkpKYsOGDXTt2jX9mGEYdO3alfXr1+epj4SEBJKTk6lSpUq25yQmJhIXF5fpJSIiIk6WYVYrzG96+qxWRIRmtUSk5CkxSdbJkydxOBzUrFkz0/GaNWsSExOTpz5eeOEF/Pz8MiVql5swYQK+vr7pr4CAgALFLSIiIvmQlmyF+U1PX0IY8b9ThIcr2RKRkqPEJFkFNXHiRObMmcPChQvx9PTM9rwXX3yR2NjY9NehQ4eKMEoREREBVBhDREq0ElPCvVq1atjtdo4dO5bp+LFjx6hVq1aO17799ttMnDiRn3/+mRYtWuR4roeHBx4eHgWOV0RERAoow95aRIQTSSBR0Y2ZNMmf4GA9qyUixVeJmclyd3enTZs2LF++PP2YaZosX76coKCgbK+bNGkSYWFhLF26lLZt2xZFqCIiIlKYAgPTZ7XSlxBGoCWEIlJslZiZLICRI0cyaNAg2rZtS2BgIFOmTOH8+fMMGTIEgAceeAB/f38mTJgAwJtvvsmYMWP48ssvqVu3bvqzWxUqVKBChQouuw8RERHJpwyzWiFR0xkdDVHRjYmI9k9vFhEpLkpUktW3b19OnDjBmDFjiImJ4cYbb2Tp0qXpxTAOHjyIYfwzOffRRx+RlJTEvffem6mfsWPHMm7cuKIMXURERApDWrIVFj79n3Lv/2tBVFRVlXsXkWKjRO2T5QraJ0uk7IpLSCA8IoIlkZEkJiVxY4MGPNq9O439/V0d2lX5/KefeOLjj0lMSgLAvVw53hk6lMd69sxzH4nJycxfu5b5a9dyLiGBxgEBPNKtG60bNMhzH5ZlsWbbNj7/+WcOxMRQrVIlBgQHc+dNN+Fmt+f7vgri8MmTPD1jBqu2bsV0OKjn58fEBx6gy4035rkPh8PBd3/8wX9XRnDsbBx1a1RjSNcuBDdvjs1my3M/m/fu5ZMff2TbwSP4eHtyb/sg+nbsiKe7+1XcWRmRYW+tcEKJxh8/PwgNdXVgIlJa5XWfLCVZuVCSJVI2bd2/n+6jR3MsNpYuNhuVLIvlhsFp0+SDRx9leK9erg4xX9o+/TSb9uzBDehO6gO5S4EkoElAANumTcu1jyOnTnHHyy+zPTqajjYb/pbFWrudww4Hz/XuzZuDB+eaVKQ4HAyZMoXwVatoZBi0NU12Gwa/myYdrruO78aNw7d8+UK449zNW7uW0LfewmFZdAV8gWVALND/1lv58tlnc+3jXEICPV99nbXbt2I3WuEwm+BmbCDFjOK+WzoSPvJpyrnlvGjEsixeCQ/njfnzcTNqk2J2wrBFY1qraVDrGla8Pp5rq1cvjFsuvSIjWRxRIbUwBo2JRoUxRMQ5St1mxCIiReVCYiI9x46l+rlz7AF+tCzmAodMkxHAEx9/zPItW1wcZd5NnD+fTXv2cDtwFPgWWJj2/3cCOw8d4tnPP8+xD8uyuOe11zgXE8MWYLVl8RWwz+HgbeCthQv57Kefco0lbO5cvlq1ilnALtPkSyDSNFkFbPv7bx6cMqUAd5p3J+PiGPjWWzSzLPYDPwLzSH1PngC+Wr2aKd9+m2s/D039kPU79wM/4zA3Al+SYu4EvmL+uvWMmT071z7+u3Ilb8yfD0wgxTwAfIVprQL+4sBxO3e++gb6fWguVBhDRIoZJVkiIpeZu3Yth8+cYb5pUifDcS9gCtDaMHhn4ULXBHcVxnz5JV7AfKBKhuOVgDmkzuBMWbQoxz7Wbt9O5J49fGaaZNwIww14BrgXeHvBghyTgQuJiUxdtIgngYFAxjmvW4HJpsnC335jz9Gjeb63q/Xs55+TbFl8DWTcct4LeA+4AZi0YEGOfRw4fpz569biMCcBXTK02IB+WNZIpn73I+cvXsy2D8uymLjgG2y2EGAUUC5D6/WkmDPZemAPK/78M1/3VyalbWJ8KdkKZqX21hIRl1GSJSJymR83biTIMGiURZsNGGia/LhpE6ZpFnVoV8fh4F6gYhZNXkA/wJ7Lvfy4aRO17Ha6ZtP+ALArJoYDx49n28eGPXs4nZDAwGza+5P6Q+mnzZtzjKUw/LxlC+2B+lm0GcBgICY2NscxXr5lC5ZlAtk9APQA8Rfj+W3Xrmz7iDlzhh2H92NZg7I5oxNu9mtYunFjtn3IZdKSrYyzWtFbT2lWS0SKlJIsEZHLpDgceOUwI+MNOCyrxCzhspGaTGUnL0+bpjgceJJ59ikjrwzn5dRHxnMv5w7YbbYc+ygspmnmeN9egJV2XnZS47QBntmckfoVUnLt49JXzIoNG55F8p6UOhlmtZ6vOkOzWiJSpJRkiYhcJrBxY9YBJ7NpX2iz0bZePexFXAnvaiUD3wApWbSZwIJs2jIKbNSI/Q4H2S1a+waoWbEidWrUyLaP5nXq4GG3k92TTkuBJMsisHHjXKIpuBZ167IKOJ1N+9eAr4cHbjkUrUiN0wIWZ3PGQtwMN26sVy/bPvyqVKFmpWqkvoNZ2U6yYzftiuA9KZUyLCG8NKtF9BEmTdKslog4l5IsEZHLDOnaFbubG4+SWn0vo1nAUsviif/7PxdEdnXu69CBGFKf+Mk492YB44ADQNdWrXLsIyQwkIDKlRlmGMRe1rYCmGGz8WivXjlW0qvq48OA4GAmGgaXlw05CjxjGAQ2aMBNjbJaqFm4Jg8dSgowjNQkNKMvgOXA/bfdlmMfN9avT9B11+NmPAscvqz1L+zG69x3SwdqVKqUbR92u50Rd3bHsM0ktfxGRucwjEep7luVe4KCcr0nyYEKY4hIEVMJ91yohLtI2bTot9/418SJ1AJCHQ58ge8Mg9WmydCuXfl0xIh87YHkar79+hGXkEAT4H5Sf8M2B/gL8HZ353wuRR4AIqOi6DZ6NG6JiQw0TfyA1TYbSyyL21u2ZNGYMXiUK5djH2fj4+ny0ktsPXCAPpZFW2A3MNswqFixIqvefJOGfn4Fvd08eWHmTN76+mv8gEGkFgD5FvgFaOrvz1/TpmXa4D4r+2Ji6PDCyxyPTcBhDgAaAxsxbAtoGnANqyeEUaViVk/D/SMpOZm7X5/IDxv/wLB1x7RuA45iN2bhWe4Cy14dQ/umTQvjlgXS99YaHT1M5d5FJN+0T1YhUZIlUnb9uW8f7y1ezOJffyUxOZlW9evzeEgI/+rQoUQlWJd0evFF1m7blr6EwQTaNmrEb5Mn57mPfTExvL9kCfNXrybuwgUa+/nxSI8eDOnaNdf9oC45f/Ein/z4I58tXcqBEyeoVrEioV268ESvXtSsXDn/N1YA89au5eVZszgQE4MF+Hh7M/j223lryJBcE6xLTsTGMvW77/j85whOxcXiX7U6j3bvwqPdulExjz83klNSmLViBdO+X8auI4cp7+FFv1uDeCokhAa1axfgDiVb4eEsjm5NJIFEnGqBX/OqNG6sZEtEcqYkq5AoyRIRESml0ma1Fke3JpxQovHHzw9CsysYKSJlnjYjFhEREcmJCmOIiJPkbW2HiIiISGkVGEgIkYRETf9nCWFEZ6Ki0BJCEbkqmskSERERyTCrFeY3PX1WS3tricjVUJIlIiIicklaspWx3Hv01lMq9y4i+aIkS0RERORyGWa1nq86Q7NaIpIvSrJEREREsqLCGCJylVT4QkRERCQnORTGyIqKZYiIkiwRERGR3AQGpiZbkanJ1uhoAP8rTouKLk9EtD9RUdpvS6QsU5IlIiIikldpyVZY5AqymspaTOpMV1R0Y8LD/TWrJVJGKckSERERya+0ZOtyl2a6Fke3JnxrDyKiW2i/LZEySEmWiIiISGHJsKyQiB+I5BRR0Y2JiPZPbxaR0k9JloiIiEhhCwwkJBBCwq8slqFZLZHSTyXcRURERJwlw35bwacWaL8tkTJCSZaIiIiIM6XttxXWZ0um/bbCw7XflkhppSRLREREpCgEBqbPaoUSDlv/TJ/VUrIlUrromSwRKVSWZbE3JobYhATq1qhBlYoVXR1SqXHg2DF+2bmTKhUrcvuNN2IYrvk9mWVZ7Dl6lHMXLlCnAGO87eBBNu/dS/1atQhq0uSq+jh/8SJ/R0fj7ubGdf7+2O32q+pHSjeHw8GuI0dISkmhkZ8f5T09XReMCmOIlAlKskSk0CyOjGRceDgb9+8HoJxhcG+HDkwcPJhrq1d3bXAl2J/79nHPG2+w79gxzLRj5d3ceLhnT9596KEijeWbX39l/OzZbD5wAEgd43/dcgtvDh7MNdWq5amPJb//ziPvv09MbCxW2rFKnp6MHTCAf991V576iL9wgVfCw/li2TLiEhMBqFu1Ks/eey+P9+yJzWbL971J6WNZFh/98AMTF3zDoZMxAHh7ePPQHV14bcAAKnp7uy44FcYQKdVslmVZuZ9WdsXFxeHr60vsnDn4uPIfY5Fi7j/LlzP4vffoYrPxhGVxDbAGmGwY4OPD+smTCVCilW/bDh6k7ZNPUt40eR7oDBwDPgR+AP7VoQPzXnihSGL5/KefGPrBB9xuszHcsvAHVpM6xnZfX9a/8w7+Vavm2Me3v/3Gva+/TgDwPHATsBt4B/gdGNu/P2P798+xjwuJidz20kv8tWcPT5omIcB5YCYQDoy86y4mDx1awLuV0uD5L77grYULgQHAYKAisBi78R431vNj9cTX8fbwcGmMQOpawagoRm/9F1FVg4jGHz8/CA11dWAicrmEhDj69fMlNjYWHx+fbM9TkpULJVkiuTuXkID/oEHck5jIF0DGOYSjQFvDoMuttzJr5EgXRVhytRgxgkMHDrAJqJvhuAU8SWqy9de0aTQNCHBqHLHnz+M/aBD9kpL4lMxjfITUMe7RuTOfP/VUjv1U79+fyufPEwlUynA8Bfg/YLnNRuz8+Xi6u2fbxzvffMOoL75gnWVx02Vt7wIjgc3vvUfLevXyfH9S+vy5bx8tn3oKeAt49rLWDRi29rw5eADP9u7tguiyERnJ4ogKRBJIFI3Bz1+zWiLFTF6TLBW+EJECm7t2LecTE3mNzB++AWoDT5km89asIS4hwQXRlVxxCQlsP3CA4WROsCD1fR4L2IEXZ81yeixfrV5NYnIyr3LlGPsDI0yTr1at4lwOY7z6r784ef48r5A5wYLUteuvAUmWxcQFC3KM5dMffqBPFgkWwBOAn2Hw6Y8/5nxDUurN+Okn3IyaQFaJfxtM61989P1PRR1WzlQYQ6TUUJIlIgW2++hR6tjtXJNNewcg0eHgyKlTRRlWibfj0CEcpL5/WakGNAL2xsQ4PZY9MTHUMwz8smnvAFxMSeHomTPZ9vFbVFT6uVlpDbgDW9Oe98o2lmPHuCWbtnJAO9Nkz9GjOfYhpd/uozGkmDeT+l2RlQ7sP14Mv0/Syr2HBMcTWvWH9HLvERFKtERKEiVZIlJglcqX54Rlkd0cxqWPzL5acpsvtatUAeBgNu3JpC7HLIqlzJXKl+eYZXExm/a8jHHtypWB7O/nGJAEVM2lWmElb29ySsMOGAaVKlTIsQ8p/SpXKI/d2J/DGQeo6FWMv08CAwl5vln6rFYwKzWrJVKCKMkSkQL7V4cOnDdNvsiizQFMNQw6NmmCXy5FESSza6tXp4aPDx+Qmnxc7ivgDPB0HivyFcR9t9xCnGnynyzaUoBphkHn66+nZloilZV+HTviZRhMAbJ6GPgDUn8ovXjvvTnG0rdTJ2YaBmezaFsLbDRN+nXsmGMfUvr1veUWHOYWUsuzXC4WN+MLQoOzm1ctRtJmtcL8phN8akH6rFZ4uKsDE5GcKMkSkQJrULs2Q7p0YaTNxntAfNrxKKAv8JtlMXbAANcFWIK9PnAg24G7ge1pxxKAj4FHgIAqVejTvr3T42jk58egzp150mbjA1Kr+QHsAu4DNlgWY+6/P8c+3NzceKhnTxYBDwGH0o6fAV4F3gCCmjalXq1aOfYz8q67SPbw4A7D4FdSE7ZkYD7Q2zAIbNCAXjdl9cSWlCW92rblpkZNsBu9gXmkfpdYwG/YjTvwdE9g5N13uzTGPEtbQhjWZ0v6rBbRRzSrJVKMqbpgLlRdUCRvkpKTeWL6dD77+WfcgcqGwVGHg6rly/PxiBFFkgiUVq/OmcNrX35JMlAdOAdcBOrXqMHv77xDlRyqGxWmxORkhn/0EZ///DOeNhuV0sa4WvnyfPrUU9x988156ueBd97hy4gITFKfKztD6oxnYOPGrJ04ETe33Ldw3LhnD/dNmMCe48epYbdzwbI4Z5rc0aIFXz7/PFWL6D2R4u30uXP0e+sdftq8AbtRAZvNixTHCa6tXpv/jXqWto0auTrE/Esr9744ujXhp3oQXbUFfn7aW0ukqKiEeyFRkiWSPwdPnOB/v/xCXEICjfz8uCcoKMdy3JI38QkJjPnySzbt3UsFLy+evusubmvRwiWx7D92jIW//kpcQgKN/fzofRVjHH3qFK/Mns3eo0ep7uvL2H79uKFu3Xz14XA4WLZ5M7///Tfubm70aNNGZdslS3/u28f3GzaQlJJC24YN6daqFXa73dVhFcxl5d6j8Sc4WImWiLMpySokSrJERESk2AoPZ3F0ayIJJILOmtUScTLtkyUiIiJS2qkwhkixpCRLREREpCRTYQyRYkdJloiIiEhpEBiYPqsVSjhs/VN7a4m4SO4lnERERESkZAgMTE22IiMh4gciOUVUdGMiov3Tm0XE+ZRkiYiIiJQ2gYGEBEJI+PR/CmNEdCYqSoUxRIqClguKiIiIlFYqjCHiEkqyREREREozFcYQKXJKskRERETKAhXGECkySrJEREREyoq0Wa2Q4HjmNn89fVYrIkKJlkhhUuELERERkbImrQphmApjiDiFZrJEREREyioVxhBxCiVZIiIiImWZCmOIFDolWSIiIiKiwhgihUhJloiIiIikUmEMkUKhwhciIiIikpkKY4gUiJIsERfbvHcv/125kpizZ7mmalUGd+lC04AAV4flUuErVzJq1izOxMfj5e7Oo9278+r992O32/Pcx8ETJ3jms8/YuGcPdrudO9u25bXQULw9PfPcx8WkJMZ/9RVfr19PssNB8zp1eGfoUBrUrp2v+5kdEcHkb77hdHw8NStVYmy/fvRs2zZffRw9fZovfv6Z7YcOUcHLiz5BQXRp2RLDyPuChAuJicxbu5aVW7diWRa3Xn89/Tt1wtvDI899WJZFxNatzF+3jriEBK7z92dI165cU61avu5HREqI0FBCIiMJiZrO6K2niCKIiGh/oqIgNNTVwYkUXzbLsixXB5Ef06ZN46233iImJoaWLVvywQcfEJjDr1Pmz5/P6NGj2b9/P40aNeLNN9+kZ8+eef56cXFx+Pr6EjtnDj7e3oVxCyIAJKek8OB77xG+ahW17XYaWxbbgROmyeM9evDBo4/m6wN0aeBwOKgzdChHTp/GB2gB7AWiAW83N6I++QT/PHyYH//VV4R99RUAbYF4YBvgaRh8M2YM3Vq3zrWPdTt2cMdLL5HgcNAEqAT8AZjAU//3f7zz0EO59hGfkMANI0Zw4MQJagCNgO3AGaBFnTpsePdd3Nxy/13X9B9+4MmPP6Yc0AY4ZrMR5XBwc8OGLB43jmo+Prn2sWH3bkLGj+dobCxtDQMD+N00qVahAt+MHk37pk1z7eNMfDx3h4WxescOGtjt+FsWG4ELlsVbDz7I03fdlWsfIlKCRUayOKICkQQSRWPw89eslpQ5CQlx9OvnS2xsLD45/PwtUZ/g5s6dy8iRIxk7diwbN26kZcuWdOvWjePHj2d5/i+//EL//v0ZOnQomzZt4u677+buu+/mr7/+KuLIRa70/BdfMHf1aj4HDjocRJgmh02T94GPfviB1+bNc3WIRa7NyJEcOX2a14EYYA1wEJgLOFJSaPb447n2sXD9el796it6AIeAX4G/gC1AgGly16uvcjIuLsc+Ei5e5PaXXqKaw0EksANYDxwB/gVMWbSIz376KddYOrzwAkdOnGBm2rVrgaPAFGDrgQP0fPXVXPv47vffeeyjj3jENIk2TVabJjsdDpYDe/fu5Z7XXiO335UdP3uWbqNHE3DuHH+Tmlz9ZprsAZokJNBz7FgOnzyZayz93nyTv3btYinwt8PBqrSYnrIsRn72GQvWrcu1DxEpwXIojJHVS89wSVlWopKsd955h4cffpghQ4bQrFkzpk+fjre3N59//nmW57/33nt0796d5557jqZNmxIWFkbr1q2ZOnVqEUcuktnpc+eY/sMPjLEshvDPul13YATwb2DKwoVcSEx0VYhFLv7CBbbt28cg4CXAK+24HbgPeBs4d/Eii377Lcd+Xpg5k1rAAiDjor4WwHdAkmny/MyZOfbxSng4FxwOvgFuynC8BhAONATGf/lljn3sOnKEvw4c4FVgEP+MsQfwFPAEELF5M2fj43PsZ+K8edxqs/EB4Jt2zAbcBsw0Tdbs3MkvO3bk2Meny5aRkJDAEtOkYYbj9YBFpomZlMT0pUtz7GPD7t0s27KFT02TbmkxAFQkdWy62Wy8MWdOrgmfiJRwWRTGaEzUFS/ttyVlXYlJspKSktiwYQNdu3ZNP2YYBl27dmX9+vVZXrN+/fpM5wN069Yt2/MBEhMTiYuLy/QSKWzLNm3iYkoK2S04ewg4c+ECa7ZvL8qwXOqtr78mBXg4m/ZBpP6DFTZ3bo797D96lAdJTWYu1wjoCPzwxx859rHw11+5EWiVRZsbqeNz+NQpTNPMto/3Fi3CTDs3Kw8ByZDjjNipuDjW7trFQ5aVntRk1A24xm7n21wSz29/+YW7LYvqWbRVAu4zTb7NZRZqUWQk1ex2sloQaAMesiw2HTjAkVOncuxHREqJS3tr+U0njNFXvC7ttxW99ZRmtaRMKjGFL06ePInD4aBmzZqZjtesWZOdO3dmeU1MTEyW58fExGT7dSZMmMD48eMLHrBIDi4kJQFQJZv2qpfOK0MzWWfPnwf+uffLVQDKkVqMIicm2b+vANWB7SkpOfaRlJKSbRyQGqMFpKSk4O7unuU55y9eBKByDn0AnLtwIduvk9v3iZHW/4Vc3pMLiYk5vidVyf177UJiIr6kzixm1wd5iEVESplsql9cKpaxmNaER4eqWIaUOSVmJquovPjii8TGxqa/Dh065OqQpBRqWa8eAD9m035p4VbzunWLIpxioU+HDtj4594vtxa4CAQ1aZJjPxU8PPghm7YLwM9AnVq1cuzjOn9/fgGym8f+ntRCHNklWADBzZsDsCyb9kv3eXurrObLUtWqXJkaFSpk+31yENjmcNAil++TFg0asMwwyGrezQJ+MAxaNGiQcx9167LH4eDvbNqXApW8vAhQlUERgUzLCi/NahF9hEmTNKslZUOJSbKqVauG3W7n2LFjmY4fO3aMWtl8YKpVq1a+zgfw8PDAx8cn00uksLVu0IDABg14yTA4fVnbUWC8YdCtZUvq55IMlCa3Xn893u7uvEFqRcGMzgEjSZ3JmvrIIzn2c1+nTvwEfH3ZcQsYA8QCEwYOzLGPSUOGcBF4Dq5ITH4EvgF65lJOa9Btt1GxXDmeJ7WaYEZHgHFATR8fOuRQ1c/Nbufhnj35zDD4/bK2ZOBpoIKnJ/1vvTXHWB7r2ZO/TZN3s2ibDmw1TYblUnX13g4dqFa+PP+22bh8zmsL8JFhMOSOO/DMIfEUkTLosmIZwaxMf1ZLyZaUZiUmyXJ3d6dNmzYsX748/ZhpmixfvpygoKAsrwkKCsp0PsBPP/2U7fkiRenzp5/mqJcXNxgGY4E5wItAC8MgyceHj4YPd3GERW/R6NGcBVoCz5D6nrwONAE2AS/cd1+Os0eQmoRdW7Uq9wL3klqo4mMgiNQCDXe3a5fj7BFA24YNGdi5M5+QWgL+Q2A20B/oBVT38eE///53jn0YhsEXzzzDrrT4x6fdzyjgBuCEzcb/Xn45xz4AXrz3Xlo2aMCtNhsPA18B7wI3GgaLDINZI0dSwcsrxz5uadaMF/r04VngDpuNz4GZQE+bjceBJ++8k9tvvDHHPjzd3Ql/7jmWGwYtDYPJabE8BrQ3DBpdey3j+vfP9X5EpAzKMKsV5jc9fVZLhTGkNCtR+2TNnTuXQYMG8fHHHxMYGMiUKVOYN28eO3fupGbNmjzwwAP4+/szYcIEILWEe6dOnZg4cSK9evVizpw5vPHGG2zcuJEbbrghT19T+2SJM+2LieHNr78mfMUKzicl4evpyaDbb+eFe+7Br2pOTwWVXr/u2kXvN97g5JkzpJD6m6Dynp5MHjqUh7t1y1MfSUlJPDBlCovXryfB4QCgqrc3I+66i7H5SATe+vpr3v7f/zh+7hwAXoZBt5tuYvYzz+R5U+OIrVt57KOP+PvwYRykPgjbvH59Pn/ySW6sXz9PfSQkJvLut9/y8XffcejMGew2G3e1a8fzffrQ7rrr8tSHZVnMW7uWdxcu5LfduwFoU68eT919N6HBwdhsWZXWuNLGPXt4c8ECvl6/nhTTxM/Xl4d79OCZu++mov6NFJG8CA9ncXRrIgkk4lQL/JpX1X5bUmLkdZ+sEpVkAUydOjV9M+Ibb7yR999/n3bt2gEQHBxM3bp1mZmhPPP8+fN55ZVX0jcjnjRpkjYjlmLH4XBwPjGRCp6eZW4D4uwkJSWx//hxAqpWxSuXmZrsmKbJybg4PN3dC/T3Nz4hgYSkJKr5+Fz1+CQlJXHy3Dlq+PrmaQPirFiWRfyFC3i6u1PuKvuAf4pceHlkVYMxb1IcDi4kJlLByyvPCZqISLrISIiKYnF0a8IJJRp//PxUGEOKv1KbZBU1JVkiIiIiThIZyeKICkQSSBSNicaf4GDNaknxldckq8SUcBcRERGRUiYwkBDSyr1fWkIY0ZmoKLSEUEo0rUsSEREREddRYQwphZRkiYiIiIjrpSVbGcu9R289pXLvUiIpyRIRERGR4iPDrNbzVWdoVktKJCVZIiIiIlK8ZFhCeGlWi+gjTJqkWS0pGVT4QkRERESKJxXGkBJKM1kiIiIiUnypMIaUQEqyRERERKT4U2EMKUGUZImIiIhIyaHCGFICKMkSERERkZJFhTGkmFPhCxEREREpmVQYQ4opzWSJiIiISMmlwhhSDCnJEhEREZGSL4vCGEQfUWEMcQklWSIiIiJSemSY1QolXLNa4hJKskSk0J2/eJFjZ86Q4nBcdR9JyckcO3OGC4mJhRjZ1YlLSOBEbCymabo0jhSHg+NnzxJ/4YJL4ygsxWmMRaSUUWEMcTEVvhCRQvPrzp28MW8e323YgGlZVPH2Zsgdd/DyffdRuUKFPPURc+YMr82dy6zlyzmXmIibYdD75pt5pW9fWtSr5+Q7yOy733/nzfnzWbNzJwDXVK7MsF69eLZ3bzzKlSuyOM4lJDBhwQJmLF3Kifh4ALq1bMmLffvS6YYbiiyOwhJ96hSvzZvHf5cvJz4pCTfDoE/79rzSty831Knj6vBEpDRRYQxxEZtlWZargyjO4uLi8PX1JXbOHHy8vV0djkixteT337nn9ddpAjxqmlwDrAFmGAb+tWqxetIkqvr45NjH4ZMnueW55zh/5gzDTJObgD3AR4bBEbudH8PCuKVZM+ffDDB1yRJGfPIJHQ2DIaZJJeB7YJbNxq033MCSceOKJNGKS0ig86hRRB08yIOmyW1ADPCpYbDZspj97LP07djR6XEUloMnTnDLs89yMTaWYaZJW2A3qWN81M2Nn157jaAmTVwdpoiURpGREBXF6OhhRNGYaPzx84PQUFcHJiVJQkIc/fr5Ehsbi08On2uUZOVCSZZI7i4mJXHNoEF0SEhggWWRMfXYBbQ3DPp268aHjz2WYz/3TpjAb7/9xvq0JO2SBKC7zcaRatX4+9NPMQznrnQ+eOIE9R96iCcsi3cBW4a2COB2m423HnyQf991l1PjAHhh5kw+/OYb1pomLTMcdwADgcXu7hyZNavE/PvU+7XX2PjHH6w3TfwyHD8PdDMMjlevzs6PP3b6GItIGRYe/s+s1qkW+DWvqlktybO8Jln6KSYiBbZg3TpOnT/P5MsSLIDrgBGmyX+XL+f8xYvZ9hFz5gzf/Poroy5LsAC8gUmWxd4TJ/hp8+bCDT4LM5Yto7zNxmtkTrAAgoF7LYvp333n9DiSU1L47McfeeSyBAvADrwNXEhKYnZEhNNjKQxHTp1i0e+/89JlCRZAeWCiafL3sWOs3LrVFeGJSFmRoTDG81VnqDCGOIWSLBEpsG0HD1LXbqdhNu1dgfikJA6dPJltH1FHjuCwLLpk094OKG8YbD90qIDR5m7bwYPcbFlk9xRZV2BXTAyOAhT2yItjZ89y6vz5bN8TP+B6u71I3pPCsOvwYcwcxrgD4GmzlZj7EZESTIUxxMmUZIlIgZX39OSMZZGUTfvxtP96e3jk2EfGcy8XB1w0zRz7KCzlPT05brt8DusfxwEPNzenL2m7dK/ZvScmcJKc39fiJLcxPgskWhbe7u5FFZKIlHWBgZnKvQezMn1WS8mWFISSLBEpsN5BQcSaJvOyaLOAj2022tSrR0C1atn2cWO9etSpWpWPs2n/HMBmI+SmmwoecC5633wzm02TrH6+JgGfGwb3BAVhyyERKwxVKlYkuFkzPjUMsioevwSIdji4JyjIqXEUljYNGxJQuXK2YzwDcDMMehXBGIuIpMswqxXmNz19VktLCKUglGSJSIFdf+219A4M5HHDYAGpRRkATgNPAsssi5f79csxKbHb7bzUty9fAq+QOnMFkAx8Abxos/Fg1674Va3qvBtJExIYSIuAAPoYBqtITRQBDgH32WwctNl49p57nB4HwIt9+7LeNHmIf2aATFITrCGGQZcbbiCwceMiiaWg3Ox2Xuzbl1nAWOBc2vEk4DPgFZuNh+64g1qVK7ssRhEpw9KSrYyzWkQf0ayWXBVVF8yFqguK5E38hQv0e/NNvtu4ET+7HT/gL9PENAzeffhhHu/ZM9c+LMvi9XnzGPfll3jZbDSx2TgIHHc4uP/WW/n8qaeKbH+q6FOnCBk/no3791PfbscX2OJwUMHTk9nPPcedRTjb8p/lyxk2bRqmw0Fzw+A4cMjhoPP11/O/l1/O8x5kxYFlWbw6Zw6vzpmDd9oYHwBOOByEdurEZ08+iXsR7kEmIpKltHLvi6NbE06oyr1LOpVwLyRKskTy5/e//2bumjXEJSTQyM+PQbfdRo1KlfLVx+GTJ/nPihXsP36cqhUrMqBTJ5rXreuUeHNimibLt2xh8e+/k5icTKv69RnQqRMVXfBvwam4OP67ciXbDx2igpcXfYKCaN+0qdOXLDrLoRMn+M+KFRw4cYJqFSsyIDhYGxGLSPETGcniiApEEpi+t1ZwsMq9l2VKsgqJkiwRERGRMizDrFYkgUTQGT8/tLdWGaV9skRERERECkqFMeQqKMkSEREREcmNCmNIPijJEhERERHJqwyzWqGEa1ZLsqQkS0REREQkPzIsIcw4qzVpkma1JJWbqwMQERERESmRAgMJIZKQqOn/FMaI6ExUlApjlHVKskRERERErlZgYGqyFZmabI2OhqjoxkRE+6cnW1ldIqWbkiwRERERkYJKS7bCwv+Z1YqKbkwU/lecqpmu0k9JloiIiIhIYQkNTZ/VWhzdGrJIssK3tiAiuoWSrVJMSZaIiIiISGHKsIQQdl3RHMJiRkcPS19WeOkSKT2UZImIiIiIOEN2mdNlywpVLKP0UQl3EREREZGilmG/reBTC7TfVimjJEtERERExBXS9tsK67Ml035b4eHab6ukU5IlIiIiIuJKgYHps1qhhMPWP9NntZRslUxKskREREREXC1tViskOJ65zV9Pn9WKiFCiVRKp8IWIiIiISHGRxX5bKoxR8ijJKgMuJCay4Jdf+OvAAbw9PLj75ptpWa+eq8OSYsY0TVb8+Scrt27Fsiw6NG1K99atsdvt+epn1+HDLPjlF2LPn6exvz99b7mFit7eTopaRESklMqw39boraeIIoiIaH+ioiA01NXBSW5slmVZrg6iOIuLi8PX15fYOXPwKYEfFJf8/juDJk/mdEIC9e12zlgWZ0yTkDZtCH/uuRJ5T1L49sbEcHdYGFsPHaK23Y4dOOxw0KhmTRaOHs31116bax8Xk5J46P33mb16NT6GQXWbjX0OB+U9PPho+HAGBAc7/T5ERERKpchIFkdUIJJAomgMfv6a1XKRhIQ4+vXzJTY2Fh8fn2zP0zNZpdhvu3Zxz+uvc8uFC/wN7HE4OGaafAms2rSJ+yZMQDm2xCUk0PWll7h45AgRwBGHg4MOB+sBrxMn6PrSSxw/ezbXfh7+4AP+t2YNnwDHTJPdDgf7gbsSExn4zjss3bDBmbchIiJSeqkwRomjJKsUe2PePK4DFlgWDdOOlQP6AzNNkx+3bOG3XVfuQi5ly6wVKzh48iQ/miadAFva62ZgmWkSFx/Px0uX5thH1JEjhK9axfuWxcOAZ9rxAOA/QEebjbCvvnLiXYiIiJRyKoxRoijJKqUSEhNZ8scfPGqalMui/S7gGrudeevWFXVoUszMW72aXkBWT+nVBP5lmsxbtSrHPhasW0dFw2BgFm0G8Lhl8UtUFEdOnSp4wCIiImXZpb210ma1glmpWa1iSElWKXX+4kVMy8I/m3YD8CN1qZiUbXHnz2f7fQJwDbl/n8RduEA1my19BiurPshDPyIiIpJHabNaYX7TCT61IH1WKzzc1YEJKMkqtapUqEDV8uVZk037aeBP06Sxn19RhiXFUOOAANYYBtk9nbfKMGh8zTXZtKa6zt+fAw4HB7LrA/B0c+OaqlULEqqIiIhkdGlWq8+W9Fktoo9oVqsYUJJVStntdoZ268YMw2D7ZW0WMAYwDYPBXbq4IDopTh7p3p2/TJP/ZNH2LbDWNHm0Z88c+7jvlluo6OnJKMBxWdtB4H3D4P7gYJVyFxERcQYVxih2lGSVYi/eey91/f3pYBi8QupswnzgDpuNacC7Dz9MjUqVXBqjuF6Xli0Z2rUrDwKDgB+AZcAjwL02G31uvpneN9+cYx/lPT35eMQI5tls3GoYzAZWA68BNxkG3lWq8PrArJ7YEhERkUKhwhjFivbJykVJ3yfrTHw8Y2bP5j8//8y5xEQA2tavz0t9+9I7KMjF0UlxYZom7y9ezHvffMP+tOIU/pUqMTwkhOfuuQe3PG5I/NOmTYR99RVrdu4EwKtcOfp36sRroaHUrlLFafGLiIjIZcLDWRzdmkgCiaAzfn5ob61CkNd9spRk5aKkJ1mXJCQmcvjkSbw9PLimWjVXhyPFlMPhYP/x41iWRd2aNfOcXF3u6OnTxCUk4F+1KhW8vAo5ShEREcmTyEiIimL01n8RVTWIaPzx84PQUFcHVnIpySokpSXJEhEREZEyKjKSxREViCSQKBqDn79mta5SXpOsEvNM1unTpxkwYAA+Pj5UqlSJoUOHEh8fn+P5I0aM4LrrrsPLy4trr72WJ598ktjY2CKMWkRERETExVQYo8iVmCRrwIABbNu2jZ9++oklS5awevVqHnnkkWzPj46OJjo6mrfffpu//vqLmTNnsnTpUoYOHVqEUYuIiIiIFAMqjFGkSsRywR07dtCsWTN+//132rZtC8DSpUvp2bMnhw8fxi+Pez3Nnz+f0NBQzp8/j5ubW56u0XJBERERESl1VBjjqpSq5YLr16+nUqVK6QkWQNeuXTEMg99++y3P/Vx6M3JKsBITE4mLi8v0EhEREREpVdJmtcL8phN8akH6rFZ4uKsDKx1KRJIVExNDjRo1Mh1zc3OjSpUqxMTE5KmPkydPEhYWluMSQ4AJEybg6+ub/goICLjquEVEREREiq20JYRhfbYQSnj6EkI9q1VwLk2yRo0ahc1my/G1M22/nYKIi4ujV69eNGvWjHHjxuV47osvvkhsbGz669ChQwX++iIiIiIixZYKYxS6vD2Y5CTPPPMMgwcPzvGc+vXrU6tWLY4fP57peEpKCqdPn6ZWrVo5Xn/u3Dm6d+9OxYoVWbhwIeXKlcvxfA8PDzw8PPIUv4iIiIhIqRAYmJpsRUYSEvU6o6OHERXdmIho//RmyTuXJlnVq1enevXquZ4XFBTE2bNn2bBhA23atAFgxYoVmKZJu3btsr0uLi6Obt264eHhwaJFi/D09Cy02EVERERESp20ZCssfPo/hTEiOhMVpcIY+VEinslq2rQp3bt35+GHHyYyMpJ169bxxBNP0K9fv/TKgkeOHKFJkyZEps1pxsXFcccdd3D+/Hk+++wz4uLiiImJISYmBofD4crbEREREREp3lQYo0BcOpOVH7Nnz+aJJ56gS5cuGIZBnz59eP/999Pbk5OT2bVrFwkJCQBs3LgxvfJgw4YNM/W1b98+6tatW2Sxi4iIiIiUOJdmtSIjWRyxh0gCiYpuTHi4v2a1clEi9slyJe2TJSIiIiJlXmQkREWxOLo14ad6EF21RZncW6tU7ZMlIiIiIiIulFbuPSQ4nrnNX08v9x4RoQqEWSkxywVFRERERMTFVBgjTzSTJSIiIiIi+aPCGDlSkiUiIiIiIvmXtoQwrM8WQglPX0KoTYy1XFBKmOhTp3jw/fdZtWULF02TckCzevWYNmwYHZo2LdJYwleu5JXwcA6fOIEJVHB3p0/Hjnz82GO4u7sXWRzJKSnMWLaM6d99x7bDhynv4cE97dvzTO/e3FCnTpHFUVjiEhKYumQJny1dyv5Tp6havjz3d+7MM3ffTUAe9tUDsCyLOatXM3XxYn7fvRs3u53urVvzTO/edGjWzMl3ICIiUsYEBhJCJCFRqUsIw7f2ICK6RZleQqjqgrlQdcHiY19MDC2GDycpOZn+QDtgHzADOAd89fzz3HvLLUUSy3Off87kb76hDjAUqAx8BywFAqpW5e+PPy6SRCspOZm7wsL4acsW7gK6WBbHgZmGwTHDYNHo0dzeqpXT4ygsp8+do/OoUUQdPkx/yyIQ2AN8YRgY3t6smDAh18TRsiyGTZvGJ8uW0dVm4/8si/NAuGGw3TSZMWIED95+e1HcjoiISNmTVoVwdPQwomhMNP4EB2d9aklMvvJaXVBJVi6UZBUfTYYN42h0NGuB5hmOnwY6A7vtds79738YhnNXwe46coRmjz3GvUA4UC5D29fAvUD/Tp2Y/cwzTo0DYOKCBYz573/53rLomuH4ReAem41fvbw4NHMm5T09nR5LYRgyZQqLIiJYbZpcn+H4KeA2w8Dy82PLtGnYbLZs+5i3di19J03iC2BwhuMm8Bjwmc3G7k8+oW7Nms64BREREQEID08vjBHl1znb00raTJdKuEupcuDYMf6OjuYFMidYAFWA94AEh4MpixY5PZaRn32GHZhG5gQL4B4gBPh23Tqnx2GaJh8uXszAyxIsAE9gmmVxNiGBOatXOz2WwnD63Dm+WrWK5y9LsACqApNNk62HD7N2+/Yc+5m2eDHBhpEpwYLUf+zeASrYbHzy44+FFreIiIhkIUNhjNDoNwkl/IpXaS6WoSRLSoQfN2/GJDWByUonwBtY/uefTo9l6/79BAHVsmm/CzifkkJ8QoJT4zgRG8uhM2eyfU/qAS3sdv7YvdupcRSWbQcPkuhwZHs/XQAvmy3X+9mwZw8hppllW3ngNtPkj7//LlCsIiIikgcZ9tYKabzrilfGYhmTJpWuYhkqfCElgnfa803nsmlPBJIBz3KXzy0VvnJ2O3E5tF+K0d3NuX+93NPuNbv3xEprcy+C96QwXHq/srufC6SOcW7vq7vdnm0fAOdstiL5PhEREZE02awHzFgso7Ttt6WZLCkR7gkKwt1mY2Y27XNJ/QA+rHt3p8fS66ab2AxszaLNBL4Aavj4OL3wReUKFbi5YUNm2mxk9WDlWmCvw0Gvtm2dGkdhaVW/PjUrVsx2jL8CHJZF99atc+ynZ2Ag/7XbScmi7SCwwrLoddNNBQtWRERECi7DTFeY3/T0Wa3SsIRQSZaUCN6entzepg2fAlMh/QO0BfwMjAD8K1Uqkkp6b4SG4mkY3APszHA8HhgObAGe79PH6XEAPP+vf7HCsniR1JmeSzYBoYbBjXXq0LVlyyKJpaDcy5Xj6Xvu4WPgQzKP8Y/ASMOgT1AQDWrXzrGfp++6i/2myWDgbIbj+4DehkENHx8GdOpU6PGLiIjIVbq035bf9FKz35aSLCkxvnnpJZrXqcMI4BpSn326AbgdcPPy4pfJk4skjgre3iwaO5ZDhkFToD1wJ1AT+BgYGBzMM717F0ksvYOCeGvIECYB/obB/wHtDIPWQIVatVg0ZozTqy0Wpud692ZYjx4MB+rZ7dwNNDcMugNtmjbls6eeyrWPNg0bMvvZZ5lvt+Nvs9ELCLbZaAAcrViRpWFhVFSlUBERkeInY7GMEl4YQyXcc6ES7sXPV6tWMWHBAmLOnKGilxdDunZlVJ8+uDn5GajLnY6LY9SsWXy/YQMpKSk08vNj0pAhBDVpUqRxAOyOjubTZcvYdvAg5T09uScoiN4331xinse63MY9e/jsp5/Yf+wYVdNmnm6/8cZ8JYxHT59mxrJl/P7335Rzc6N769bc36lTiSlnLyIiUqZFRrI4okJqCfgM+225+lkt7ZNVSJRkiYiIiIi4QNrGxumFMeiMn59rC2NonywRERERESm5SnBhDCVZIiIiIiJSfJXAwhhKskREREREpPgrQYUxlGSJiIiIiEjJkGEJYcZZrUmTitesVtGWYxMRERERESmowEBCiCQkavo/hTEiOhMV5drCGJdoJktEREREREqeYlwYQ0mWiIiIiIiUXMWwMIaSLBERERERKfmKUWEMJVkiIiIiIlI6FJPCGCp8ISIiIiIipYuLC2NoJktEREREREofFxbGUJIlIiIiIiKllwsKYyjJEhERERGR0q8IC2MoyRIRERERkbKhiApjqPCFiIiIiIiULU4ujKGZLBERERERKXucWBhDSZaIiIiIiJRdTiiMoSRLRERERESkEAtjKMkSERERERGBQiuMocIXIiIiIiIiGWVTGGPbtrxdriRLRERERETkcoGBqclWZGqyNToath2tnadLtVxQREREREQkOxkKY/Rlbp4u0UyWiIiIiIhIbkJD6ZGQAP1yP1UzWSIiIiIiIoVISZaIiIiIiEgh0nLBXFiWBUBcQoKLIxEREREREVe6lBNcyhGyY7NyO6OMO3z4MAEBAa4OQ0REREREiolDhw5xzTXXZNuuJCsXpmkSHR1NxYoVsdlsOZ4bFxdHQEAAhw4dwsfHp4gilNxoXIonjUvxpHEpnjQuxZPGpXjSuBRPpWVcLMvi3Llz+Pn5YRjZP3ml5YK5MAwjxyw1Kz4+PiX6m6e00rgUTxqX4knjUjxpXIonjUvxpHEpnkrDuPj6+uZ6jgpfiIiIiIiIFCIlWSIiIiIiIoVISVYh8vDwYOzYsXh4eLg6FMlA41I8aVyKJ41L8aRxKZ40LsWTxqV4KmvjosIXIiIiIiIihUgzWSIiIiIiIoVISZaIiIiIiEghUpIlIiIiIiJSiJRkiYiIiIiIFCIlWQV0+vRpBgwYgI+PD5UqVWLo0KHEx8fn6VrLsujRowc2m41vvvnGuYGWMfkdl9OnTzNixAiuu+46vLy8uPbaa3nyySeJjY0twqhLn2nTplG3bl08PT1p164dkZGROZ4/f/58mjRpgqenJ82bN+f7778vokjLlvyMy6effkrHjh2pXLkylStXpmvXrrmOo1yd/P59uWTOnDnYbDbuvvtu5wZYRuV3XM6ePcvw4cOpXbs2Hh4eNG7cWP+WOUF+x2XKlCnpP+MDAgJ4+umnuXjxYhFFW/qtXr2akJAQ/Pz88vy5NiIigtatW+Ph4UHDhg2ZOXOm0+MsUpYUSPfu3a2WLVtav/76q7VmzRqrYcOGVv/+/fN07TvvvGP16NHDAqyFCxc6N9AyJr/jsnXrVuuee+6xFi1aZO3evdtavny51ahRI6tPnz5FGHXpMmfOHMvd3d36/PPPrW3btlkPP/ywValSJevYsWNZnr9u3TrLbrdbkyZNsrZv32698sorVrly5aytW7cWceSlW37H5f7777emTZtmbdq0ydqxY4c1ePBgy9fX1zp8+HARR1665XdcLtm3b5/l7+9vdezY0brrrruKJtgyJL/jkpiYaLVt29bq2bOntXbtWmvfvn1WRESEtXnz5iKOvHTL77jMnj3b8vDwsGbPnm3t27fP+vHHH63atWtbTz/9dBFHXnp9//331ssvv2x9/fXXefpcu3fvXsvb29saOXKktX37duuDDz6w7Ha7tXTp0qIJuAgoySqA7du3W4D1+++/px/74YcfLJvNZh05ciTHazdt2mT5+/tbR48eVZJVyAoyLhnNmzfPcnd3t5KTk50RZqkXGBhoDR8+PP3PDofD8vPzsyZMmJDl+ffdd5/Vq1evTMfatWtnPfroo06Ns6zJ77hcLiUlxapYsaL1n//8x1khlklXMy4pKSlW+/btrRkzZliDBg1SkuUE+R2Xjz76yKpfv76VlJRUVCGWSfkdl+HDh1u33XZbpmMjR460OnTo4NQ4y6q8fK59/vnnreuvvz7Tsb59+1rdunVzYmRFS8sFC2D9+vVUqlSJtm3bph/r2rUrhmHw22+/ZXtdQkIC999/P9OmTaNWrVpFEWqZcrXjcrnY2Fh8fHxwc3NzRpilWlJSEhs2bKBr167pxwzDoGvXrqxfvz7La9avX5/pfIBu3bple77k39WMy+USEhJITk6mSpUqzgqzzLnacXn11VepUaMGQ4cOLYowy5yrGZdFixYRFBTE8OHDqVmzJjfccANvvPEGDoejqMIu9a5mXNq3b8+GDRvSlxTu3buX77//np49exZJzHKlsvAzX58eCyAmJoYaNWpkOubm5kaVKlWIiYnJ9rqnn36a9u3bc9dddzk7xDLpasclo5MnTxIWFsYjjzzijBBLvZMnT+JwOKhZs2am4zVr1mTnzp1ZXhMTE5Pl+XkdM8nd1YzL5V544QX8/Pyu+OEoV+9qxmXt2rV89tlnbN68uQgiLJuuZlz27t3LihUrGDBgAN9//z27d+/m8ccfJzk5mbFjxxZF2KXe1YzL/fffz8mTJ7nllluwLIuUlBSGDRvGSy+9VBQhSxay+5kfFxfHhQsX8PLyclFkhUczWVkYNWoUNpstx1deP5BcbtGiRaxYsYIpU6YUbtBlgDPHJaO4uDh69epFs2bNGDduXMEDFyklJk6cyJw5c1i4cCGenp6uDqfMOnfuHAMHDuTTTz+lWrVqrg5HMjBNkxo1avDJJ5/Qpk0b+vbty8svv8z06dNdHVqZFhERwRtvvMGHH37Ixo0b+frrr/nuu+8ICwtzdWhSimkmKwvPPPMMgwcPzvGc+vXrU6tWLY4fP57peEpKCqdPn852GeCKFSvYs2cPlSpVynS8T58+dOzYkYiIiAJEXro5c1wuOXfuHN27d6dixYosXLiQcuXKFTTsMqlatWrY7XaOHTuW6fixY8eyHYNatWrl63zJv6sZl0vefvttJk6cyM8//0yLFi2cGWaZk99x2bNnD/v37yckJCT9mGmaQOqs/a5du2jQoIFzgy4DrubvS+3atSlXrhx2uz39WNOmTYmJiSEpKQl3d3enxlwWXM24jB49moEDB/LQQw8B0Lx5c86fP88jjzzCyy+/jGFozqGoZfcz38fHp1TMYoFmsrJUvXp1mjRpkuPL3d2doKAgzp49y4YNG9KvXbFiBaZp0q5duyz7HjVqFH/++SebN29OfwG8++67fPHFF0VxeyWWM8cFUmew7rjjDtzd3Vm0aJF+U18A7u7utGnThuXLl6cfM02T5cuXExQUlOU1QUFBmc4H+Omnn7I9X/LvasYFYNKkSYSFhbF06dJMzzpK4cjvuDRp0oStW7dm+jnyf//3f3Tu3JnNmzcTEBBQlOGXWlfz96VDhw7s3r07PekFiIqKonbt2kqwCsnVjEtCQsIVidSlRNiyLOcFK9kqEz/zXV15o6Tr3r271apVK+u3336z1q5dazVq1ChTqfDDhw9b1113nfXbb79l2weqLljo8jsusbGxVrt27azmzZtbu3fvto4ePZr+SklJcdVtlGhz5syxPDw8rJkzZ1rbt2+3HnnkEatSpUpWTEyMZVmWNXDgQGvUqFHp569bt85yc3Oz3n77bWvHjh3W2LFjVcLdCfI7LhMnTrTc3d2tBQsWZPp7ce7cOVfdQqmU33G5nKoLOkd+x+XgwYNWxYoVrSeeeMLatWuXtWTJEqtGjRrWa6+95qpbKJXyOy5jx461KlasaH311VfW3r17rWXLllkNGjSw7rvvPlfdQqlz7tw5a9OmTdamTZsswHrnnXesTZs2WQcOHLAsy7JGjRplDRw4MP38SyXcn3vuOWvHjh3WtGnTVMJdMjt16pTVv39/q0KFCpaPj481ZMiQTB8+9u3bZwHWypUrs+1DSVbhy++4rFy50gKyfO3bt881N1EKfPDBB9a1115rubu7W4GBgdavv/6a3tapUydr0KBBmc6fN2+e1bhxY8vd3d26/vrrre+++66IIy4b8jMuderUyfLvxdixY4s+8FIuv39fMlKS5Tz5HZdffvnFateuneXh4WHVr1/fev311/XLOifIz7gkJydb48aNsxo0aGB5enpaAQEB1uOPP26dOXOm6AMvpbL7HHVpHAYNGmR16tTpimtuvPFGy93d3apfv771xRdfFHnczmSzLM2TioiIiIiIFBY9kyUiIiIiIlKIlGSJiIiIiIgUIiVZIiIiIiIihUhJloiIiIiISCFSkiUiIiIiIlKIlGSJiIiIiIgUIiVZIiIiIiIihUhJloiIiIiISCFSkiUiIiXC4MGDsdlsV7x2795dKP3PnDmTSpUqFUpfV2v16tWEhITg5+eHzWbjm2++cWk8IiJydZRkiYhIidG9e3eOHj2a6VWvXj1Xh3WF5OTkq7ru/PnztGzZkmnTphVyRCIiUpSUZImISInh4eFBrVq1Mr3sdjsA3377La1bt8bT05P69eszfvx4UlJS0q995513aN68OeXLlycgIIDHH3+c+Ph4ACIiIhgyZAixsbHpM2Tjxo0DyHJGqVKlSsycOROA/fv3Y7PZmDt3Lp06dcLT05PZs2cDMGPGDJo2bYqnpydNmjThww8/zPH+evTowWuvvUbv3r0L4d0SERFXcXN1ACIiIgW1Zs0aHnjgAd5//306duzInj17eOSRRwAYO3YsAIZh8P7771OvXj327t3L448/zvPPP8+HH35I+/btmTJlCmPGjGHXrl0AVKhQIV8xjBo1ismTJ9OqVav0RGvMmDFMnTqVVq1asWnTJh5++GHKly/PoEGDCvcNEBGRYkVJloiIlBhLlizJlPz06NGD+fPnM378eEaNGpWevNSvX5+wsDCef/759CTr3//+d/p1devW5bXXXmPYsGF8+OGHuLu74+vri81mo1atWlcV27///W/uueee9D+PHTuWyZMnpx+rV68e27dv5+OPP1aSJSJSyinJEhGREqNz58589NFH6X8uX748AFu2bGHdunW8/vrr6W0Oh4OLFy+SkJCAt7c3P//8MxMmTGDnzp3ExcWRkpKSqb2g2rZtm/7/58+fZ8+ePQwdOpSHH344/XhKSgq+vr4F/loiIlK8KckSEZESo3z58jRs2PCK4/Hx8YwfPz7TTNIlnp6e7N+/nzvvvJPHHnuM119/nSpVqrB27VqGDh1KUlJSjkmWzWbDsqxMx7IqbHEp4bsUD8Cnn35Ku3btMp136RkyEREpvZRkiYhIide6dWt27dqVZQIGsGHDBkzTZPLkyRhGas2nefPmZTrH3d0dh8NxxbXVq1fn6NGj6X/++++/SUhIyDGemjVr4ufnx969exkwYEB+b0dEREo4JVkiIlLijRkzhjvvvJNrr72We++9F8Mw2LJlC3/99RevvfYaDRs2JDk5mQ8++ICQkBDWrVvH9OnTM/VRt25d4uPjWb58OS1btsTb2xtvb29uu+02pk6dSlBQEA6HgxdeeIFy5crlGtP48eN58skn8fX1pXv37iQmJvLHH39w5swZRo4cmeU18fHxmfb92rdvH5s3b6ZKlSpce+21BXuTRESkyKiEu4iIlHjdunVjyZIlLFu2jJtuuombb76Zd999lzp16gDQsmVL3nnnHd58801uuOEGZs+ezYQJEzL10b59e4YNG0bfvn2pXr06kyZNAmDy5MkEBATQsWNH7r//fp599tk8PcP10EMPMWPGDL744guaN29Op06dmDlzZo77ev3xxx+0atWKVq1aATBy5EhatWrFmDFjrvatERERF7BZly80FxERERERkaummSwREREREZFCpCRLRERERESkECnJEhERERERKURKskRERERERAqRkiwREREREZFCpCRLRERERESkECnJEhERERERKURKskRERERERAqRkiwREREREZFCpCRLRERERESkECnJEhERERERKURKskRERERERArR/wNBYnr6bCxx3QAAAABJRU5ErkJggg==",
"text/plain": [
"