diff --git a/src/concrete/ml/pandas/_client_server_files/client.zip b/src/concrete/ml/pandas/_client_server_files/client.zip index 98c00d4639..647e9ca2a7 100644 --- a/src/concrete/ml/pandas/_client_server_files/client.zip +++ b/src/concrete/ml/pandas/_client_server_files/client.zip @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:a381c81460742d4d2f58cb74dd5bc75f22e06cd5d78aebc9449f40bc802e1978 -size 597 +oid sha256:19caee91428bc352305b70ec4593987a5fe6ac898d94fff1bbb2b1d22f422046 +size 603 diff --git a/src/concrete/ml/pandas/_client_server_files/server.zip b/src/concrete/ml/pandas/_client_server_files/server.zip index e8092ec805..2b91df81d3 100644 --- a/src/concrete/ml/pandas/_client_server_files/server.zip +++ b/src/concrete/ml/pandas/_client_server_files/server.zip @@ -1,3 +1,3 @@ version https://git-lfs.github.com/spec/v1 -oid sha256:be0a6745629386ab3dae36156fc2f55b332c8d27a912752c993f9dd2f09a0e56 -size 1410 +oid sha256:6f047f789d306012cbd638a81d5a157a030c3b7b788235953a5af1beaf2e5d13 +size 1438 diff --git a/src/concrete/ml/pandas/_development.py b/src/concrete/ml/pandas/_development.py index b419ae253c..518a072772 100644 --- a/src/concrete/ml/pandas/_development.py +++ b/src/concrete/ml/pandas/_development.py @@ -164,12 +164,12 @@ def save_client_server(client_path: Path = CLIENT_PATH, server_path: Path = SERV # Get the input-set and circuit generating functions inputset = config["get_inputset"]() cp_func = config["to_compile"] - compilation_configuration = Configuration(compress_evaluation_keys=True) + configuration = Configuration( + composable=True, compress_evaluation_keys=True, compress_input_ciphertexts=True + ) # Compile the circuit and allow it to be composable with itself - merge_circuit = cp_func.compile( - inputset, composable=True, configuration=compilation_configuration - ) + merge_circuit = cp_func.compile(inputset, configuration=configuration) # Save the client and server files using the MLIR merge_circuit.client.save(client_path) diff --git a/src/concrete/ml/sklearn/linear_model.py b/src/concrete/ml/sklearn/linear_model.py index 6e6cd861f3..341a57fd74 100644 --- a/src/concrete/ml/sklearn/linear_model.py +++ b/src/concrete/ml/sklearn/linear_model.py @@ -347,7 +347,7 @@ def _get_training_quantized_module( # Enable the underlying FHE circuit to be composed with itself # This feature is used in order to be able to iterate in the clear n times without having # to encrypt/decrypt the weight/bias values between each loop - configuration = Configuration(composable=True, compress_evaluation_keys=True) + configuration = Configuration(composable=True) composition_mapping = {0: 2, 1: 3} diff --git a/tests/torch/test_hybrid_converter.py b/tests/torch/test_hybrid_converter.py index 7becb76cc0..6d5efa99ee 100644 --- a/tests/torch/test_hybrid_converter.py +++ b/tests/torch/test_hybrid_converter.py @@ -37,17 +37,9 @@ def run_hybrid_llm_test( ): """Run the test for any model with its private module names.""" - # Multi-parameter strategy is used in order to speed-up the FHE executions - configuration = Configuration( - single_precision=False, - compress_input_ciphertexts=True, - ) - # Create a hybrid model hybrid_model = HybridFHEModel(model, module_names) - hybrid_model.compile_model( - inputs, p_error=0.01, n_bits=8, rounding_threshold_bits=8, configuration=configuration - ) + hybrid_model.compile_model(inputs, p_error=0.01, n_bits=8, rounding_threshold_bits=8) # Check we can run the simulate locally logits_simulate = hybrid_model(inputs, fhe="simulate").logits